Geometric aspects of probability theory and mathematical statistics

書誌事項

Geometric aspects of probability theory and mathematical statistics

by V.V. Buldygin and A.B. Kharazishvili

(Mathematics and its applications, v. 514)

Kluwer Academic, c2000

大学図書館所蔵 件 / 27

この図書・雑誌をさがす

注記

Bibliography: p. 287-300

Includes index

内容説明・目次

内容説明

It is well known that contemporary mathematics includes many disci plines. Among them the most important are: set theory, algebra, topology, geometry, functional analysis, probability theory, the theory of differential equations and some others. Furthermore, every mathematical discipline consists of several large sections in which specific problems are investigated and the corresponding technique is developed. For example, in general topology we have the following extensive chap ters: the theory of compact extensions of topological spaces, the theory of continuous mappings, cardinal-valued characteristics of topological spaces, the theory of set-valued (multi-valued) mappings, etc. Modern algebra is featured by the following domains: linear algebra, group theory, the theory of rings, universal algebras, lattice theory, category theory, and so on. Concerning modern probability theory, we can easily see that the clas sification of its domains is much more extensive: measure theory on ab stract spaces, Borel and cylindrical measures in infinite-dimensional vector spaces, classical limit theorems, ergodic theory, general stochastic processes, Markov processes, stochastical equations, mathematical statistics, informa tion theory and many others.

目次

Preface. 1. Convex sets in vector spaces. 2. Brunn-Minkowski inequality. 3. Convex polyhedra. 4. Two classical isoperimetric problems. 5. Some infinite-dimensional vector spaces. 6. Probability measures and random elements. 7. Convergence of random elements. 8. The structure of supports of Borel measures. 9. Quasi-invariant probability measures. 10. Anderson inequality and unimodal distributions. 11. Oscillation phenomena and extensions of measures. 12. Comparison principles for Gaussian processes. 13. Integration of vector-valued functions and optimal estimation of stochastic processes. Appendices. Bibliography. Subject Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA48696203
  • ISBN
    • 0792364139
  • 出版国コード
    ne
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Dordrecht
  • ページ数/冊数
    x, 303 p.
  • 大きさ
    25 cm
  • 件名
  • 親書誌ID
ページトップへ