Stochastic processes in physics, chemistry, and biology
Author(s)
Bibliographic Information
Stochastic processes in physics, chemistry, and biology
(Lecture notes in physics, 557)
Springer-Verlag, c2000
Available at 26 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
L/N||LNP||55700073387
Note
Includes bibliographical references
Description and Table of Contents
Description
The theory of stochastic processes originally grew out of efforts to describe Brownian motion quantitatively. Today it provides a huge arsenal of methods suitable for analyzing the influence of noise on a wide range of systems. The credit for acquiring all the deep insights and powerful methods is due ma- ly to a handful of physicists and mathematicians: Einstein, Smoluchowski, Langevin, Wiener, Stratonovich, etc. Hence it is no surprise that until - cently the bulk of basic and applied stochastic research was devoted to purely mathematical and physical questions. However, in the last decade we have witnessed an enormous growth of results achieved in other sciences - especially chemistry and biology - based on applying methods of stochastic processes. One reason for this stochastics boom may be that the realization that noise plays a constructive rather than the expected deteriorating role has spread to communities beyond physics. Besides their aesthetic appeal these noise-induced, noise-supported or noise-enhanced effects sometimes offer an explanation for so far open pr- lems (information transmission in the nervous system and information p- cessing in the brain, processes at the cell level, enzymatic reactions, etc.). They may also pave the way to novel technological applications (noise-- hanced reaction rates, noise-induced transport and separation on the na- scale, etc.). Key words to be mentioned in this context are stochastic r- onance, Brownian motors or ratchets, and noise-supported phenomena in excitable systems.
Table of Contents
Stochastic Transport and Brownian Motion.- Directed Current Without Dissipation: Reincarnation of a Maxwell-Loschmidt Demon.- Molecular Motors and Stochastic Models.- Nonlinearly Coupled Chemical Reactions.- Thermodynamics of Isothermal Brownian Motors.- Rocking Ratchets at High Frequencies.- Defect Dragging in Periodic Structures.- Conduction in an Inhomogeneous Medium.- Theory and Control of Multiple Hopping in Activated Surface Diffusion.- Brownian Motion in a d-Dimensional Space with Fluctuating Friction.- Active Motion of Brownian Particles.- Diffusion in Granular Gases of Viscoelastic Particles.- Stochastic Resonance and Phase Synchronization.- Scaling of Noise and Constructive Aspects of Fluctuations.- Stochastic Resonances in Underdamped Bistable Systems.- Stochastic Resonance in a System of Coupled Asymmetric Resonators.- Optimizing Information Transmission in Model Neuronal Ensembles: The Role of Internal Noise.- Stochastic Resonance with Images and Spatially Correlated Stochastic Patterns.- Adiabatic and Non-adiabatic Resonances in Excitable Systems.- The Lighthouse Model of a Neural Net with Delay.- Noise-enhanced Phase Coherence in Ensembles of Stochastic Resonators.- Estimation of Synchronization from Noisy Data with Application to Human Brain Activity.- Nonequilibrium Thermodynamics and Dynamical Complexity.- Noise-Induced Phase Transitions and Reactive Processes.- Noise-Induced Order in Extended Systems: A Tutorial.- Linear Instability Mechanisms of Noise-Induced Phase Transitions.- Parametric Resonance Revisited.- On Noise-Induced Transitions in Nonlinear Oscillators.- The Kramers Oscillator Revisited.- Reactive Processes in Low Dimensions: Statistical and Dynamical Aspects.- On-Off Intermittency and Stochastic Stability in Nematics Driven by Multiplicative Noise.- Effect of Boundary Condition Fluctuations on Smoluchowski Reaction Rates.- Experimental Studies of Noise-Induced Phenomena in a Tunnel Diode.- Quantum Mechanical Model of Proton Transfer in a Fluctuating Potential Field of the Active Site of ?-Chymotrypsin.- Large Fluctuations and Noise in Chaotic Systems.- A Gentle Introduction to the Integration of Stochastic Differential Equations.- Controlling Large Fluctuations: Theory and Experiment.- Fluctuational Escape from a Chaotic Attractor.- Problems of a Statistical Ensemble Theory for Systems Far from Equilibrium.- Stochastic Approach to Lyapunov Exponents in Coupled Chaotic Systems.- Peculiarities of Nonhyperbolic Chaos.- Information of Open Systems.- Structure Formation.- Nonlinear Spatiotemporal Patterns in Globally Coupled Reaction-Diffusion Systems.- Segregation Effects in Randomly Mixed Diffusion-Controlled Binary Reactions.- Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia.- Stochastic Field Equation for Amorphous Surface Growth.- Epitaxial Growth with Elastic Interaction: Layer and Cluster Growth.- Stochastic Evolution of a Discrete Line: Numerical Results.- Structures in Planetary Rings- Stability and Gravitational Scattering.
by "Nielsen BookData"