書誌事項

Multiplicative number theory

Harold Davenport

(Graduate texts in mathematics, 74)

Springer, c2000

3rd ed. / revised by Hugh L. Montgomery

この図書・雑誌をさがす
注記

Includes bibliographical references (p. xi) and index

内容説明・目次

内容説明

The new edition of this thorough examination of the distribution of prime numbers in arithmetic progressions offers many revisions and corrections as well as a new section recounting recent works in the field. The book covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions and the theorem of Siegel. It also presents a simplified, improved version of the large sieve method.

目次

From the contents: Primes in Arithmetic Progression.- Gauss' Sum.- Cyclotomy.- Primes in Arithmetic Progression: The General Modulus.- Primitive Characters.- Dirichlet's Class Number Formula.- The Distribution of the Primes.- Riemann's Memoir.- The Functional Equation of the L Function.- Properties of the Gamma Function.- Integral Functions of Order 1.- The Infinite Products for xi(s) and xi(s,Zero-Free Region for zeta(s).- Zero-Free Regions for L(s, chi).- The Number N(T).- The Number N(T, chi).- The explicit Formula for psi(x).- The Prime Number Theorem.- The Explicit Formula for psi(x,chi).- The Prime Number Theorem for Arithmetic Progressions (I).- Siegel's Theorem.- The Prime Number Theorem for Arithmetic Progressions (II).- The Polya-Vinogradov Inequality.- Further Prime Number Sums.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BA49553449
  • ISBN
    • 0387950974
  • LCCN
    00056313
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xiii, 177 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ