Understanding analysis

著者
    • Abbott, Stephen
書誌事項

Understanding analysis

Stephen Abbott

(Undergraduate texts in mathematics)

Springer, c2001

この図書・雑誌をさがす
注記

Includes bibliographical references (p. 251-252) and index

内容説明・目次

内容説明

This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.

目次

1 The Real Numbers.- 1.1 Discussion: The Irrationality of % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaSbdaGcaa % qaaiaaikdaaSqabaaaaa!3794! $$\sqrt 2 $$.- 1.2 Some Preliminaries.- 1.3 The Axiom of Completeness.- 1.4 Consequences of Completeness.- 1.5 Cantor's Theorem.- 1.6 Epilogue.- 2 Sequences and Series.- 2.1 Discussion: Rearrangements of Infinite Series.- 2.2 The Limit of a Sequence.- 2.3 The Algebraic and Order Limit Theorems.- 2.4 The Monotone Convergence Theorem and a First Look at Infinite Series.- 2.5 Subsequences and the Bolzano-Weierstrass Theorem.- 2.6 The Cauchy Criterion.- 2.7 Properties of Infinite Series.- 2.8 Double Summations and Products of Infinite Series.- 2.9 Epilogue.- 3 Basic Topology of R.- 3.1 Discussion: The Cantor Set.- 3.2 Open and Closed Sets.- 3.3 Compact Sets.- 3.4 Perfect Sets and Connected Sets.- 3.5 Baire's Theorem.- 3.6 Epilogue.- 4 Functional Limits and Continuity.- 4.1 Discussion: Examples of Dirichlet and Thomae.- 4.2 Functional Limits.- 4.3 Combinations of Continuous Functions.- 4.4 Continuous Functions on Compact Sets.- 4.5 The Intermediate Value Theorem.- 4.6 Sets of Discontinuity.- 4.7 Epilogue.- 5 The Derivative.- 5.1 Discussion: Are Derivatives Continuous?.- 5.2 Derivatives and the Intermediate Value Property.- 5.3 The Mean Value Theorem.- 5.4 A Continuous Nowhere-Differentiable Function.- 5.5 Epilogue.- 6 Sequences and Series of Functions.- 6.1 Discussion: Branching Processes.- 6.2 Uniform Convergence of a Sequence of Functions.- 6.3 Uniform Convergence and Differentiation.- 6.4 Series of Functions.- 6.5 Power Series.- 6.6 Taylor Series.- 6.7 Epilogue.- 7 The Riemann Integral.- 7.1 Discussion: How Should Integration be Defined?.- 7.2 The Definition of the Riemann Integral.- 7.3 Integrating Functions with Discontinuities.- 7.4 Properties of the Integral.- 7.5 The Fundamental Theorem of Calculus.- 7.6 Lebesgue's Criterion for Riemann Integrability.- 7.7 Epilogue.- 8 Additional Topics.- 8.1 The Generalized Riemann Integral.- 8.2 Metric Spaces and the Baire Category Theorem.- 8.3 Fourier Series.- 8.4 A Construction of R From Q.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BA50739080
  • ISBN
    • 0387950605
  • LCCN
    00058308
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xii, 257 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ