Advances in classification and data analysis
Author(s)
Bibliographic Information
Advances in classification and data analysis
(Studies in classification, data analysis, and knowledge organization)
Springer, c2001
Available at 20 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This volume contains a selection of papers presented at the biannual meeting of the Classification and Data Analysis Group of Societa Italiana di Statistica, which was held in Rome, July 5-6, 1999. From the originally submitted papers, a careful review process led to the selection of 45 papers presented in four parts as follows: CLASSIFICATION AND MULTIDIMENSIONAL SCALING Cluster analysis Discriminant analysis Proximity structures analysis and Multidimensional Scaling Genetic algorithms and neural networks MUL TIV ARIA TE DATA ANALYSIS Factorial methods Textual data analysis Regression Models for Data Analysis Nonparametric methods SPATIAL AND TIME SERIES DATA ANALYSIS Time series analysis Spatial data analysis CASE STUDIES INTERNATIONAL FEDERATION OF CLASSIFICATION SOCIETIES The International Federation of Classification Societies (IFCS) is an agency for the dissemination of technical and scientific information concerning classification and data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) from the following Scientific Societies and Groups: British Classification Society -BCS; Classification Society of North America - CSNA; Gesellschaft fUr Klassifikation - GfKI; Japanese Classification Society -JCS; Classification Group of Italian Statistical Society - CGSIS; Societe Francophone de Classification -SFC. Now the IFCS includes also the following Societies: Dutch-Belgian Classification Society - VOC; Polish Classification Society -SKAD; Associayao Portuguesa de Classificayao e Analise de Dados -CLAD; Korean Classification Society -KCS; Group-at-Large.
Table of Contents
- Part I. Classification and Multidimensional Scaling: Cluster Analysis.- D. Bruzzese, A. Irpino: Galois Lattices of Modal Symbolic Objects
- A. Cerioli, S. Zani: Exploratory Methods for Detecting High Densitiy Regions in Cluster Analysis
- G.D. Costanzo: A k-means Consensus Classification
- A. Di Ciaccio: MIXISO: A Non-Hierarchical Clustering Method for Mixed-Mode Data
- R. Piccarreta: 'Stable Clusters': A New Approach for Clustering Binary Variables
- M. Vichi: Double k-means Clustering for Simultaneous Classification of Objects and Variables
- Discriminant Analysis.- F. Palumbo: Catagorial FDA Under Prospective Sampling Scheme: a Proposal for Variable Selection
- A. Petrucci, M. Pratesi: The Effect of Telephone Survey Design on Discriminant Analysis
- Proximity Structures Analysis and Multidimensional Scaling.- L. Bocci: A Dissimilarity Measure between Probalistic Symbolic Objects
- S. Camiz, G. Le Calve: Recent Experimentation on Euclidean Approximations of Biased Euclidean Distances
- F. Cipollini, P. Ganugi: Comparing Capital Structure through Similarity Analysis: Evidence about two Industrial Districts
- R. Coppi, P. D'Urso: The Geometric Approach to the Comparison of Multivariate Time Trajectories
- D. Vicari: Ultramine Spaces in Classification
- Genetic Algorithms and Neural Networks.- R. Baragona, C. Calzini, F. Battaglia: Genetic Algorithms and Clustering: an Application to Fisher's Iris Data
- I. Morlini: Using Radial Basis Function Networks for Classification Problems
- R. Siciliano, A. Mooijaart: Unconditional Latent Budget Analysis: a Neural Network Approach
- Part II. Multivariate Data Analysis: Factorial Methods.- P. Amenta, L. D'Ambra: Generalized Constrained Principal Component Analysis
- R. Lombardo, J. van Rijckevorsel: Interaction Terms in Homogeneity Analysis: Higher Order Non-Linear Multiple Correspondence Analysis
- P. Mantovan, A. Pastore: Perturbation Models for Principal Component Analysis of Rainwater Pollution Data
- R. Rocci: Core Matrix Rotation to Natural Zeros in Three-Mode Factor Analysis
- Textual Data Analysis.- S. Balbi, G. Giordano: A Factorial Technique for Analysing Textual Data with External Information
- A. Tuzzi: Subjects on Using Open and Closed-Ended Questions
- Regression Models for Data Analysis.- R. Bernardini Papalia, F. Di Iorio: Alternative Error Term Specifications in the Log-Tobit Model
- G. D'Epifanio: A Customer Satisfaction Approach for User-Oriented Comparative Evaluations of Services
- F. Domma, S. Ingrassia: Mixture Models for Maximum Likelihood Estimation from Incomplete Values
- M. La Rocca: Robust Inference in the Logistic Regression Model
- G.C. Porzio: A plot for Submodel Selection in Generalized Linear Models
- G. Vittadini: On the Use of Multivariate Regression Models in the Context of Multilevel Analysis
- Nonparametric Methods.- R. Borgoni
- C. Provasi: Nonparametric Estimation Methods for Sparse Contingency Tables
- S. Borra, A. Di Ciaccio: Reduction of Prediction Error by Bagging Projection Pursuit Regression
- C. Cappelli, F. Mola, R. Siciliano: Selecting Regression Tree Models: a Statistical Testing Procedure
- P. D'Urso, T. Gastaldi
- Linear Fuzzy Regression Analysis with Asymmetric Spreads
- Part III. Spatial and Time Series Data Analysis: Time Series Analysis.- A. Amendola, F. Giordano, C. Perna: Forecasting Non-Linear Time Series: Empirical Evidences on Financial Data
- G. Cubadda, P. Daddi: Dynamics and Comovements of Regional Exports in Italy
- F. Giordano, C. Perna: Large-sample Properties of Neural Estimators in a Regression Model with (omega)-mixing errors
- M. La Rocca, C. Vitale: Subseries Lenght in MBB Procedure for (omega)-mixing Processes
- F. Moauro: Modelling a Change of Classification by a Structural Time Series Approach
- Spatial Data Analysis.- M. Alfo, P. Postiglione: Spatial Discriminant Analysis Using Covariates Information
- S. De Iaco, D. Posa: Some Aspect
by "Nielsen BookData"