Statistical mechanics of learning
著者
書誌事項
Statistical mechanics of learning
Cambridge University Press, 2001
- : hard
- : pbk
大学図書館所蔵 全26件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
Learning is one of the things that humans do naturally, and it has always been a challenge for us to understand the process. Nowadays this challenge has another dimension as we try to build machines that are able to learn and to undertake tasks such as datamining, image processing and pattern recognition. We can formulate a simple framework, artificial neural networks, in which learning from examples may be described and understood. The contribution to this subject made over the last decade by researchers applying the techniques of statistical mechanics is the subject of this book. The authors provide a coherent account of various important concepts and techniques that are currently only found scattered in papers, supplement this with background material in mathematics and physics and include many examples and exercises to make a book that can be used with courses, or for self-teaching, or as a handy reference.
目次
- 1. Getting started
- 2. Perceptron learning - basics
- 3. A choice of learning rules
- 4. Augmented statistical mechanics formulation
- 5. Noisy teachers
- 6. The storage problem
- 7. Discontinuous learning
- 8. Unsupervised learning
- 9. On-line learning
- 10. Making contact with statistics
- 11. A bird's eye view: multifractals
- 12. Multilayer networks
- 13. On-line learning in multilayer networks
- 14. What else?
- Appendix A. Basic mathematics
- Appendix B. The Gardner analysis
- Appendix C. Convergence of the perceptron rule
- Appendix D. Stability of the replica symmetric saddle point
- Appendix E. 1-step replica symmetry breaking
- Appendix F. The cavity approach
- Appendix G. The VC-theorem.
「Nielsen BookData」 より