書誌事項

Statistical mechanics of learning

A. Engel, C. Van den Broeck

Cambridge University Press, 2001

  • : hard
  • : pbk

この図書・雑誌をさがす
内容説明・目次

内容説明

Learning is one of the things that humans do naturally, and it has always been a challenge for us to understand the process. Nowadays this challenge has another dimension as we try to build machines that are able to learn and to undertake tasks such as datamining, image processing and pattern recognition. We can formulate a simple framework, artificial neural networks, in which learning from examples may be described and understood. The contribution to this subject made over the last decade by researchers applying the techniques of statistical mechanics is the subject of this book. The authors provide a coherent account of various important concepts and techniques that are currently only found scattered in papers, supplement this with background material in mathematics and physics and include many examples and exercises to make a book that can be used with courses, or for self-teaching, or as a handy reference.

目次

  • 1. Getting started
  • 2. Perceptron learning - basics
  • 3. A choice of learning rules
  • 4. Augmented statistical mechanics formulation
  • 5. Noisy teachers
  • 6. The storage problem
  • 7. Discontinuous learning
  • 8. Unsupervised learning
  • 9. On-line learning
  • 10. Making contact with statistics
  • 11. A bird's eye view: multifractals
  • 12. Multilayer networks
  • 13. On-line learning in multilayer networks
  • 14. What else?
  • Appendix A. Basic mathematics
  • Appendix B. The Gardner analysis
  • Appendix C. Convergence of the perceptron rule
  • Appendix D. Stability of the replica symmetric saddle point
  • Appendix E. 1-step replica symmetry breaking
  • Appendix F. The cavity approach
  • Appendix G. The VC-theorem.

「Nielsen BookData」 より

詳細情報
ページトップへ