Classical many-body problems amenable to exact treatments : (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space
著者
書誌事項
Classical many-body problems amenable to exact treatments : (solvable and/or integrable and/or linearizable ...) in one-, two- and three-dimensional space
(Lecture notes in physics, . monographs ; m66)(Physics and astronomy online library)
Springer, c2001
大学図書館所蔵 全26件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 735-749)
内容説明・目次
内容説明
This book focuses on exactly treatable classical (i. e. non-quantal non-relativistic) many-body problems, as described by Newton's equation of motion for mutually interacting point particles. Most of the material is based on the author's research and is published here for the first time in book form. One of the main novelties is the treatment of problems in two- and three-dimensional space. Many related techniques are presented, e. g. the theory of generalized Lagrangian-type interpolation in higher-dimensional spaces. This book is written for students as well as for researchers; it works out detailed examples before going on to treat more general cases. Many results are presented via exercises, with clear hints pointing to their solutions.
目次
Classical (Nonquantal, Nonrelativistic) Many-Body Problems * One-Dimensional Systems. Motions on the Line and on the Circle * N-Body Problems Treatable Via Techniques of Exact Lagrangian Interpolation in Space of One or More Dimensions * Solvable and/or Integrable Many-Body Problems in the Plane, Obtained by Complexification * Many-Body Systems in Ordinary (Three-Dimensional) Space: Solvable, Integrable, Linearizable Problems * Appendices: A: Elliptic Functions * B: Functional Equations * C: Hermite Polynomials * D: Remarkable Matrices and Related Identities * E: Langrangian Approximation for Eigenvalue Problems in One and More Dimensions * F: Some Theorems of Elementary Geometry in Multidimensions * G: Asymptotic Behavior of the Zeros of a Polynomial Whose Coefficients Diverge Exponentially * H: Some Formulas for Pauli Matrices and Three-Vectors * References.
「Nielsen BookData」 より