Hilbert spaces
Author(s)
Bibliographic Information
Hilbert spaces
(North-Holland mathematical library, v. 61 . C*-algebras / Corneliu Constantinescu ; v. 4)
Elsevier, 2001
Available at 39 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Include indexes
Description and Table of Contents
Description
This book has evolved from the lecture course on Functional Analysis I had given several times at the ETH. The text has a strict logical order, in the style of "Definition - Theorem - Proof - Example - Exercises". The proofs are rather thorough and there many examples.
The first part of the book(the first three chapters, resp. the first two volumes) is devoted to the theory of Banach spaces in the most general sense of the term. The purpose of the first chapter (resp. first volume) is to introduce those results on Banach spaces which are used later or which are closely connected with the book. It therefore only contains a small part of the theory, and several results are stated (and proved) in a diluted form. The second chapter (which together with Chapter 3 makes the second volume) deals with Banach algebras (and involutive Banach algebras), which constitute the main topic of the first part of the book. The third chapter deals with compact operators on Banach spaces and linear (ordinary and partial) differential equations - applications of the, theory of Banach algebras.
Table of Contents
Introduction.
5. Hilbert Spaces.
5.1 Pre-Hilbert Spaces.
5.1.1 General Results.
5.1.2 Examples.
5.1.3 Hilbert sums.
5.2 Orthogonal Projections of Hilbert space.
5.2.1 Projections onto Convex Sets.
5.2.2 Orthogonality.
5.2.3 Orthogonal Projections.
5.2.4 Mean Ergodic Theorems.
5.2.5 The Frechet-Riesz Theorem.
5.3 Adjoint Operators.
5.3.1 General Results.
5.3.2 Supplementary Results.
5.3.3 Selfadjoint Operators.
5.3.4 Normal Operators.
5.4 Representations.
5.4.1 Cyclic Representation.
5.4.2 General Representations.
5.4.3 Example of Representations
5.5 Orthonormal Bases.
5.5.1 General Results.
5.5.2 Hilbert Dimension.
5.5.3 Standard Examples.
5.5.4 The Fourier-Plancherel Operator.
5.5.5 Operators and Orthonormal Bases.
5.5.6 Self-normal Compact Operators.
5.5.7 Examples of Real C*-algebras.
5.6 Hilbert right C*-Modules.
5.6.1 Some General Results.
5.6.2 Self-duality.
5.6.3 Von Neumann right W*-modules.
5.6.4 Examples.
5.6.5 KE.
5.6.6 Matrices over C*-algebras.
5.6.7 Type I W*-algebras.
Name Index. Subject Index. Symbol Index.
by "Nielsen BookData"