Systems of conservation laws : two-dimensional Riemann problems
著者
書誌事項
Systems of conservation laws : two-dimensional Riemann problems
(Progress in nonlinear differential equations and their applications / editor, Haim Brezis, v. 38)
Birkhäuser, c2001
大学図書館所蔵 全26件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [291]-306
Includes index
"with 143 illustrations"--T.p.
内容説明・目次
内容説明
This work is based on the lecture notes of the course M742: Topics in Partial Dif- ferential Equations, which I taught in the Spring semester of 1997 at Indiana Univer- sity. My main intention in this course was to give a concise introduction to solving two-dimensional compressibleEuler equations with Riemann data, which are special Cauchy data. This book covers new theoretical developments in the field over the past decade or so. Necessary knowledge of one-dimensional Riemann problems is reviewed and some popularnumerical schemes are presented. Multi-dimensional conservation laws are more physical and the time has come to study them. The theory onbasicone-dimensional conservation laws isfairly complete providing solid foundation for multi-dimensional problems. The rich theory on ellip- tic and parabolic partial differential equations has great potential in applications to multi-dimensional conservation laws. And faster computers make itpossible to reveal numerically more details for theoretical pursuitin multi-dimensional problems. Overview and highlights Chapter 1is an overview ofthe issues that concern us inthisbook.
It lists theEulersystemandrelatedmodelssuch as theunsteady transonic small disturbance, pressure-gradient, and pressureless systems. Itdescribes Mach re- flection and the von Neumann paradox. In Chapters 2-4, which form Part I of the book, we briefly present the theory of one-dimensional conservation laws, which in- cludes solutions to the Riemann problems for the Euler system and general strictly hyperbolic and genuinely nonlinearsystems, Glimm's scheme, and large-time asymp- toties.
目次
1 Problems.- 1.0 Outline.- 1.1 Some models.- 1.2 Basic problems.- 1.2.1 Probing problems.- 1.3 Some solutions.- 1.4 von Neumann paradoxes.- 1.5 End notes.- I Basics in One Dimension.- 2 One-dimensional Scalar Equations.- 2.1 The 1-D Burgers equation.- 2.2 Discontinuities and weak solutions.- 2.3 Rankine-Hugoniot relation.- 2.4 Nonuniqueness and entropy conditions.- 2.5 Some existence and uniqueness results.- 2.6 Some simple numerical schemes.- Exercises.- 3 Riemann Problems.- 3.1 The isentropic Euler system.- 3.1.1 Rarefaction waves.- 3.1.2 Discontinuous solutions.- 3.1.3 Entropy conditions.- 3.2 The adiabatic Euler system for polytropic gases.- 3.2.1 Rarefaction waves.- 3.2.2 Discontinuity.- 3.2.3 The entropy condition.- 3.2.4 Solutions.- 3.3 Lax's Riemann solutions.- 3.3.1 Hyperbolicity and genuine nonlinearity.- 3.3.2 The Riemann problem.- 3.3.3 Continuous solutions.- 3.3.4 Discontinuous solutions.- 3.3.5 Lax's entropy condition.- 3.3.6 Complete solutions.- 3.4 Nonconvex equations and viscous profiles.- 3.4.1 Nonconvex scalar equations.- 3.4.2 Viscous profiles.- 3.4.3 Stable viscous profiles.- 3.5 End notes and further references.- 4 Cauchy Problems.- 4.1 Smooth solutions.- 4.1.1 A new proof of blow-up in the scalar case.- 4.1.2 Systems of two equations and Riemann invariants.- 4.1.3 Blow-up and smooth solutions in systems of two equations.- 4.1.4 Remarks.- 4.2 Wave interactions.- 4.2.1 Scalar elementary wave interactions.- 4.2.2 The isentropic Euler system.- 4.3 Glimm's scheme.- 4.3.1 Glimm's scheme.- 4.3.2 Estimates.- 4.3.3 Compactness.- 4.3.4 Consistency.- 4.3.5 An example of single shocks.- 4.3.6 An example with large data (Nishida's result).- 4.4 Generalized Riemann problems.- 4.4.1 Convex scalar equations.- 4.4.2 Nonconvex scalar equations.- 4.5 2.- 7.6.2 Inner-field equations for ? ? 2.- 7.6.3 Inner-field solutions for ? = 2.- 7.6.4 Inner-field solutions for 1 > ? > 2.- 7.6.5 The case ? = 1.- 7.7 Intermediate field solutions for u0 < 0.- 7.8 Rankine-Hugoniot relation.- 7.9 Shock wave solutions for u0 < 0.- 7.9.1 Shocks without swirls.- 7.9.2 General shock solutions.- 7.10 Summary.- 7.10.1 ?0=0 u0 ? 0, ? ? 1.- 7.10.2 ?0=0 u0 < 0, ? ? 1.- 7.10.3 ?0>0 u0 = 0, ? ? 1.- 7.10.3.A ? = 2.- 7.10.3.B ? > 2.- 7.10.3.C 1 < ? < 2.- 7.10.3.D ? = 1.- 7.10.4 ?0>0 u0 > 0, ? = 2.- 7.10.5 ?0>0 u0 > 0, ? > 2.- 7.10.6 ?0>0 u0 > 0, 1 < ? < 2.- 7.10.7 ?0>0 u0 > 0, ? = 1.- 7.10.8 ?0>0 u0 < 0, ? = 2.- 7.10.9 ?0>0 u0 2.- 7.10.10 ?0>0 u0 < 0, 1 < ? < 2.- 7.10.11 ?0>0 u0 < 0, ? = 1.- 7.10.12 Physical description of the solutions.- 7.11 End notes.- 7.12 Appendices.- 7.12.A Finiteness of the parameters at point (1, 0, 0).- 7.12.B Proof of Lemma 7.15.- 7.13 Exercises.- 8 Plausible Structures for 2-D Euler Systems.- 8.1 The four-wave Riemann problem.- 8.2 Planar elementary waves.- 8.3 Classification/reduction.- 8.4 Some plausible structures.- 8.5 Numerical experiments.- 8.6 Vortex sheets for the incompressible Euler system.- 9 The Pressure-Gradient Equations of the Euler Systems.- 9.1 A simple splitting example.- 9.2 The pressure-gradient system.- 9.3 A four-wave Riemann problem.- 9.4 An elliptic result.- 9.5 End notes.- 9.6 Appendix.- 10 The Convective Systems of the Euler Systems.- 10.1 Systems.- 10.2 Unbounded solutions and delta waves.- 10.3 1-D theory.- 10.4 2-D Riemann solutions.- 10.5 End notes.- 11 The Two-dimensional Burgers Equations.- 11.1 Small wedge angle asymptotics.- 11.2 Weak incident shock problem.- 11.3 Weak incident shock asymptotics.- 11.4 Core region asymptotic equations.- 11.5 Initial boundary values for the 2-D Burgers system.- 11.6 Numerical solutions.- 11.7 Theoretical approaches.- 11.7.1 Shock conditions and characteristics.- 11.7.2 Regular reflection.- 11.7.3 von Neumann paradox.- 11.7.4 Global transonic problems.- 11.7.5 Riemann problems.- 11.8 End notes.- Exercises.- III Numerical schemes.- 12 Numerical Approaches.- 12.1 Generalities.- 12.2 Upwind schemes.- 12.2.1 Intuitive schemes.- 12.2.2 Linear upwind schemes.- 12.2.3 Nonlinear upwind schemes.- Exercises.- 12.3 Lax-Friedrichs scheme.- 12.4 Godunov method.- 12.5 Approximate Riemann solver.- 12.6 Higher order methods.- 12.6.1 Lax-Wendroff scheme.- 12.6.2 Slope limiter.- 12.6.3 Flux limiter.- 12.6.4 TVD (total variation diminishing) fluxes.- 12.7 Positive schemes.- 12.7.1 Motivation.- 12.7.2 Nonnegative partition (positivity) principle.- 12.7.3 One-dimensional positive schemes.- 12.7.4 Multidimensional positive schemes.- 12.7.5 Symmetrizable positive schemes.- List of Symbols.
「Nielsen BookData」 より