Maximum entropy of cycles of even period

著者

書誌事項

Maximum entropy of cycles of even period

Deborah M. King, John B. Strantzen

(Memoirs of the American Mathematical Society, no. 723)

American Mathematical Society, 2001

大学図書館所蔵 件 / 14

この図書・雑誌をさがす

注記

"July 2001, volume 152, number 723 (fourth of 5 numbers)"

Includes bibliographical references (p. 59)

内容説明・目次

内容説明

A finite fully invariant set of a continuous map of the interval induces a permutation of that invariant set. If the permutation is a cycle, it is called its orbit type. It is known that Misiurewicz-Nitecki orbit types of period $n$ congruent to $1 \pmod 4$ and their generalizations to orbit types of period $n$ congruent to $3 \pmod 4$ have maximum entropy amongst all orbit types of odd period $n$ and indeed amongst all $n$-permutations for $n$ odd. We construct a family of orbit types of period $n$ congruent to $0\pmod 4$ which attain maximum entropy amongst $n$-cycles.

目次

Introduction Preliminaries Some useful properties of the induced matrix of a maximodal permutation The family of orbit types Some easy lemmas Two inductive lemmas The remaining case References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA52934407
  • ISBN
    • 0821827073
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Pvovidence, R.I.
  • ページ数/冊数
    viii, 59 p.
  • 大きさ
    26 cm
  • 親書誌ID
ページトップへ