Dialgebras and related operads
Author(s)
Bibliographic Information
Dialgebras and related operads
(Lecture notes in mathematics, 1763)
Springer-Verlag, c2001
Available at 72 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references
Description and Table of Contents
Description
four The of this volume deal with new notions of whose papers algebras feature is common to have two So are called generating operations. they dial- bras. The first motivation to introduce such structures a algebraic was problem in It turned out later that some of them dendriform algebraic K-theory. (the related are to in the of ren- dialgebras) closely Hopf algebras occuring theory malization of A. Connes and D. Kreimer. are also related to the They closely notion of Gerstenhaber homotopy algebra. Let us first describe the motivation from The algebraic K-theory. al- braic of a are not like the but K-groups ring periodic topological K-groups, of of some them shows the existence of a computation periodicity phenomenon. For instance the 0 are of 4 for > 2. The groups K,,(Z) Q periodic period n are constructed on the linear GL. If algebraic K-groups general we - group it its additive that is the Lie then the place by counterpart, algebra gl, analogue of is : it is denoted HC. It algebraic K-theory computable cyclic homology, turns that for out this the is well understood. theory periodicity phenomenon It takes the form of a exact : long sequence - - - -+ -.+
-4 HCn_1 HH,,, -+ HC,, --+ HCn-2 HCn+1 where HHstands for Hochschild In other homology. words, cyclic homology is not but the obstruction to is it is periodic (in general) periodicity known, Hochschild homology.
Table of Contents
Dialgebras.- Dialgebra (co)homology with coefficients.- Un endofoncteur de la categorie des operades.- Un theoreme de Milnor-Moore pour les algebres de Leibniz.
by "Nielsen BookData"