Spherical inversion on SL[n](R)
Author(s)
Bibliographic Information
Spherical inversion on SL[n](R)
(Springer monographs in mathematics)
Springer, c2001
Available at 38 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
On t.p. "[n]" is subscript
Includes bibliographical references (p. 411-417) and index
Description and Table of Contents
Description
For the most part the authors are concerned with SLn(R) and with invariant differential operators, the invarinace being with respect to various subgroups. To a large extent, this book carries out the general results of Harish-Chandra.
Table of Contents
* Iwasawa Decomposition and Positivity * Invariant Differential Operators and the Iwasawa Direct Image * Characters, Eigenfunctions, Spherical Kernel and W-Invariance * Convolutions, Spherical Functions and the Mellin Transform * Gelfand-Naimark Decomposition and the Harish-Chandra --Function * Polar Decomposition * The Casimir Operator * The Harish-Chandra Series for Eigenfunctions of Casimir * General Inversion * The Harish-Chandra Schwartz Space (HCS) and Anker's Proof of Inversion * Tube Domains and the L^1 (Even L^p) HCS Spaces * SL_n(C)
by "Nielsen BookData"