A geometric setting for Hamiltonian perturbation theory
Author(s)
Bibliographic Information
A geometric setting for Hamiltonian perturbation theory
(Memoirs of the American Mathematical Society, no. 727)
American Mathematical Society, 2001
Available at 15 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"September 2001, volume 153, number 727 (third of 5 numbers)"
Includes bibliographical references (p. 110-112)
Description and Table of Contents
Description
The perturbation theory of non-commutatively integrable systems is revisited from the point of view of non-Abelian symmetry groups. Using a coordinate system intrinsic to the geometry of the symmetry, we generalize and geometrize well-known estimates of Nekhoroshev (1977), in a class of systems having almost $G$-invariant Hamiltonians. These estimates are shown to have a natural interpretation in terms of momentum maps and co-adjoint orbits. The geometric framework adopted is described explicitly in examples, including the Euler-Poinsot rigid body.
Table of Contents
Introduction Part 1. Dynamics: Lie-Theoretic preliminaries Action-group coordinates On the existence of action-group coordinates Naive averaging An abstract formulation of Nekhoroshev's theorem Applying the abstract Nekhoroshev's theorem to action-group coordinates Nekhoroshev-type estimates for momentum maps Part 2. Geometry: On Hamiltonian $G$-spaces with regular momenta Action-group coordinates as a symplectic cross-section Constructing action-group coordinates The axisymmetric Euler-Poinsot rigid body Passing from dynamic integrability to geometric integrability Concluding remarks Appendix A. Proof of the Nekhoroshev-Lochak theorem Appendix B. Proof the ${\mathcal W}$ is a slice Appendix C. Proof of the extension lemma Appendix D. An application of converting dynamic integrability into geometric integrability: The Euler-Poinsot rigid body revisited Appendix E. Dual pairs, leaf correspondence, and symplectic reduction Bibliography.
by "Nielsen BookData"