From convexity to nonconvexity
著者
書誌事項
From convexity to nonconvexity
(Nonconvex optimization and its applications, v. 55)
Kluwer Academic, c2001
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
This collection of papers is dedicated to the memory of Gaetano Fichera, a great mathematician and also a good friend to the editors. Regrettably it took an unusual amount of time to bring this collection out. This was primarily due to the fact that the main editor who had collected all of the materials, for this volume, P. D. Panagiotopoulos, died unexpectedly during the period when we were editing the manuscript. The other two editors in appreciation of Panagiotopoulos' contribution to this field, believe it is therefore fitting that this collection be dedicated to his memory also. The theme of the collection is centered around the seminal research of G. Fichera on the Signorini problem. Variants on this idea enter in different ways. For example, by bringing in friction the problem is no longer self-adjoint and the minimization formulation is not valid. A large portion of this collection is devoted to survey papers concerning hemivariational methods, with a main point of its application to nonsmooth mechanics. Hemivariational inequali ties, which are a generalization of variational inequalities, were pioneered by Panagiotopoulos. There are many applications of this theory to the study of non convex energy functionals occurring in many branches of mechanics. An area of concentration concerns contact problems, in particular, quasistatic and dynamic contact problems with friction and damage. Nonsmooth optimization methods which may be divided into the main groups of subgradient methods and bundle methods are also discussed in this collection.
目次
- 1. Frictional contact problems
- L.-E. Andersson, A. Klarbring. 2. Solutions for quasilinear hemivariational inequalities
- S. Carl. 3. A Survey on Nonsmooth Critical Point Theory
- M. Degiovanni. 4. Exhaustive families of approximations revisited
- V.F. Demyanov, A.M. Rubinov. 5. Optimal shape design
- Z. Denkowski. 6. Duality in Nonconvex Finite Deformation Theory
- D.Y. Gao. 7. Contact Problems in Multibody Dynamics
- F. Pfeiffer, C. Glocker. 8. Hyperbolic Hemivariational Inequality
- D. Goeleven, D. Motreanu. 9. Time-integration algorithms
- K. Hackl. 10. Contact Stress Optimization
- J. Haslinger. 11. Recent results in contact problems with Coulomb friction
- J. Jarusek, C. Eck. 12. Polarization fields in linear piezoelectricity
- P. Bisegna, F. Maceri. 13. Survey of the methods for nonsmooth optimization
- M.M. Makela. 14. Hemivariational inequalities and hysteresis. 15. Non convex aspects of dynamics with impact
- L. Paoli, M. Schatzmann. 16. On Global Properties of D.C. Functions
- L.N. Polyakova. 17. Variational-Hemivariational Inequalities
- G. Dinca, G. Pop. 18. Perturbations of Eigenvalue Problems
- V.D. Radulescu. 19. Implicit variational inequalities arising in frictional unilateral contact mechanics: analysis and numerical solution of quasistatic problems
- M. Cocu, M. Raous. 20. Regularity for variational inequalities
- R. Schumann. 21. A Survey of 1-D Problems of Dynamic Contact and Damage
- M. Shillor.22. Nonconvexity in plasticity and damage
- G.E. Stavroulakis. 23. Augmented Lagrangian Methods for Contact Problems
- J.J. Telega, A. Galka. 24. Mountain Pass Theorems
- S.A. Tersian. 25. Proximal Methods for Variational Inequalities with Set-Valued Monotone Operators
- A. Kaplan, R. Tichatschke. 26. Simons' Problem
- M.P.D. Zagrodny. 27. Density estimates of Blake & Zisserman functional
- M. Carriero, et al.
「Nielsen BookData」 より