Groupoids in analysis, geometry, and physics : AMS-IMS-SIAM Joint Summer Research Conference on Groupoids in Analysis, Geometry, and Physics June 20-24, 1999, University of Colorado, Boulder
著者
書誌事項
Groupoids in analysis, geometry, and physics : AMS-IMS-SIAM Joint Summer Research Conference on Groupoids in Analysis, Geometry, and Physics June 20-24, 1999, University of Colorado, Boulder
(Contemporary mathematics, 282)
American Mathematical Society, c2001
大学図書館所蔵 全52件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
Groupoids often occur when there is symmetry of a nature not expressible in terms of groups. Other uses of groupoids can involve something of a dynamical nature. Indeed, some of the main examples come from group actions. It should also be noted that in many situations where groupoids have been used, the main emphasis has not been on symmetry or dynamics issues. For example, a foliation is an equivalence relation and has another groupoid associated with it, called the holonomy groupoid. While the implicit symmetry and dynamics are relevant, the groupoid records mostly the structure of the space of leaves and the holonomy.More generally, the use of groupoids is very much related to various notions of orbit equivalence. The point of view that groupoids describe 'singular spaces' can be found in the work of A. Grothendieck and is prevalent in the non-commutative geometry of A. Connes. This book presents the proceedings from the Joint Summer Research Conference on 'Groupoids in Analysis, Geometry, and Physics' held in Boulder, CO. The book begins with an introduction to ways in which groupoids allow a more comprehensive view of symmetry than is seen via groups. Topics range from foliations, pseudo-differential operators, $KK$-theory, amenability, Fell bundles, and index theory to quantization of Poisson manifolds. Readers will find examples of important tools for working with groupoids. This book is geared to students and researchers. It is intended to improve their understanding of groupoids and to encourage them to look further while learning about the tools used.
目次
Groupoids: Unifying internal and external symmetry-A tour through some examples by A. Weinstein A primer for the Brauer group of a groupoid by D. P. Williams Amenable groupoids by C. Anantharaman and J. Renault The role of groupoids in classification theory. A new approach. The UHF algebra case by G. Della Rocca and M. Takesaki Bundles over groupoids by P. S. Muhly Groupoids and foliations by A. Haefliger Etale groupoids, derived categories, and operations by I. Moerdijk The analytic index for proper, Lie groupoid actions by A. L. T. Paterson Groupoid $C^*$-algebras and operator $K$-theory by P.-Y. Le Gall Groupoids of manifolds with corners and index theory by B. Monthubert Quantization of Poisson algebras associated to Lie algebroids by N. P. Landsman and B. Ramazan.
「Nielsen BookData」 より