Shape optimization by the homogenization method
Author(s)
Bibliographic Information
Shape optimization by the homogenization method
(Applied mathematical sciences, v. 146)
Springer, c2002
Available at 53 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [427]-452) and index
Description and Table of Contents
Description
This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.
Table of Contents
1 Homogenization.- 1.1 Introduction to Periodic Homogenization.- 1.1.1 A Model Problem in Conductivity.- 1.1.2 Two-scale Asymptotic Expansions.- 1.1.3 Variational Characterizations and Estimates of the Effective Tensor.- 1.1.4 Generalization to the Elasticity System.- 1.2 Definition of H-convergence.- 1.2.1 Some Results on Weak Convergence.- 1.2.2 Problem Statement.- 1.2.3 The One-dimensional Case.- 1.2.4 Main Results.- 1.3 Proofs and Further Results.- 1.3.1 Tartar's Method.- 1.3.2 G-convergence.- 1.3.3 Homogenization of Eigenvalue Problems.- 1.3.4 A Justification of Periodic Homogenization.- 1.3.5 Homogenization of Laminated Structures.- 1.3.6 Corrector Results.- 1.4 Generalization to the Elasticity System.- 1.4.1 Problem Statement.- 1.4.2 H-convergence.- 1.4.3 Lamination Formulas.- 2 The Mathematical Modeling of Composite Materials.- 2.1 Homogenized Properties of Composite Materials.- 2.1.1 Modeling of Composite Materials.- 2.1.2 The G-closure Problem.- 2.2 Conductivity.- 2.2.1 Laminated Composites.- 2.2.2 Hashin-Shtrikman Bounds.- 2.2.3 G-closure of Two Isotropic Phases.- 2.3 Elasticity.- 2.3.1 Laminated Composites.- 2.3.2 Hashin-Shtrikman Energy Bounds.- 2.3.3 Toward G-closure.- 2.3.4 An Explicit Optimal Bound for Shape Optimization.- 3 Optimal Design in Conductivity.- 3.1 Setting of Optimal Shape Design.- 3.1.1 Definition of a Model Problem.- 3.1.2 A first Mathematical Analysis.- 3.1.3 Multiple State Equations.- 3.1.4 Shape Optimization as a Degeneracy Limit.- 3.1.5 Counterexample to the Existence of Optimal Designs.- 3.2 Relaxation by the Homogenization Method.- 3.2.1 Existence of Generalized Designs.- 3.2.2 Optimality Conditions.- 3.2.3 Multiple State Equations.- 3.2.4 Gradient of the Objective Function.- 3.2.5 Self-adjoint Problems.- 3.2.6 Counterexample to the Uniqueness of.- Optimal Designs.- 4 Optimal Design in Elasticity.- 4.1 Two-phase Optimal Design.- 4.1.1 The Original Problem.- 4.1.2 Counterexample to the Existence of Optimal Designs.- 4.1.3 Relaxed Formulation of the Problem.- 4.1.4 Compliance Optimization.- 4.1.5 Counterexample to the Uniqueness of Optimal Designs.- 4.1.6 Eigenfrequency Optimization.- 4.2 Shape Optimization.- 4.2.1 Compliance Shape Optimization.- 4.2.2 The Relaxation Process.- 4.2.3 Link with the Michell Truss Theory.- 5 Numerical Algorithms.- 5.1 Algorithms for Optimal Design in Conductivity.- 5.1.1 Optimality Criteria Method.- 5.1.2 Gradient Method.- 5.1.3 A Convergence Proof.- 5.1.4 Numerical Examples.- 5.2 Algorithms for Structural Optimization.- 5.2.1 Compliance Optimization.- 5.2.2 Numerical Examples.- 5.2.3 Technical Algorithmic Issues.- 5.2.4 Penalization of Intermediate Densities.- 5.2.5 Quasiconvexification versus Convexification.- 5.2.6 Multiple Loads Optimization.- 5.2.7 Eigenfrequency Optimization.- 5.2.8 Partial Relaxation.
by "Nielsen BookData"