Multiscale and multiresolution methods : theory and applications
著者
書誌事項
Multiscale and multiresolution methods : theory and applications
(Lecture notes in computational science and engineering, 20)
Springer, c2002
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes references
内容説明・目次
内容説明
Many computionally challenging problems omnipresent in science and engineering exhibit multiscale phenomena so that the task of computing or even representing all scales of action is computationally very expensive unless the multiscale nature of these problems is exploited in a fundamental way. Some diverse examples of practical interest include the computation of fluid turbulence, structural analysis of composite materials, terabyte data mining, image processing, and a multitude of others. This book consists of both invited and contributed articles which address many facets of efficient multiscale representation and scientific computation from varied viewpoints such as hierarchical data representations, multilevel algorithms, algebraic homogeni- zation, and others. This book should be of particular interest to readers interested in recent and emerging trends in multiscale and multiresolution computation with application to a wide range of practical problems.
目次
Invited Papers: A. Brandt: Multiscale Scientific Computation: Review 2001.- B. Engquist, O. Runborg: Wavelet-Based Numerical Homogenization with Applications.- D.L. Donoho, X. Huo: Beamlets and Multiscale Image Analysis.- C. Schwab, A.-M. Matache: Generalized FEM for Homogenization Problems.- J.-L. Starck: Nonlinear Multiscale Transforms.
Contributed Papers: F. Arandiga, G. Chiavassa, R. Donat: Application of Harten's Framework for Multiresolution: From Conservation Laws to Image Compression.- F. Fairag: A Two Level Finite Element Technique for Pressure Recovery from the Stream Function Formulation of the Navier-Stokes Equations.- I.K. Fodor, C. Kamath: The Role of Multiresolution in Mining Massive Image Datasets.- J. Hoffman: Dynamic Subgrid Modeling for Scalar Convection-Diffusion-Reaction Equations with Fractal Coefficients.- C.R. Johnson, M. Mohr, U. Rude, A. Samsonov, K. Zyp: Multilevel Methods for Inverse Bioelectric Field Problems.- O.E. Livne, A. Brandt: Multiscale Eigenbasis Calculations: N Eigenfunctions in O(N log N).- G. Schmidlin, C. Schwab: Wavelet Galerkin BEM on Unstructures Meshes by Aggregation.
Appendix: Collected Color Figures
「Nielsen BookData」 より