Mathematics and its history
Author(s)
Bibliographic Information
Mathematics and its history
(Undergraduate texts in mathematics)
Springer, c2002
2nd ed
Available at 40 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 479-513) and index
Description and Table of Contents
Description
From the reviews of the first edition: '[This book] can be described as a collection of critical historical essays dealing with a large variety of mathematical disciplines and issues, and intended for a broad audience - we know of no book on mathematics and its history that covers half as much nonstandard material. Even when dealing with standard material, Stillwell manages to dramatize it and to make it worth rethinking. In short, his book is a splendid addition to the genre of works that build royal roads to mathematical culture for the many' - ("Mathematical Intelligencer"). This second edition includes new chapters on Chinese and Indian number theory, on hypercomplex numbers, and on algebraic number theory. Many more exercises have been added, as well as commentary to the exercises explaining how they relate to the preceding section, and how they foreshadow later topics.
Table of Contents
The Theorem of Pythagoras.- Greek Geometry.- Greek Number Theory.- Infinity in Greek Mathematics.- Number Theory in Asia.- Polynomial Equations.- Analytic Geometry.- Projective Geometry.- Calculus.- Infinite Series.- The Revival of Number Theory.- Elliptic Functions.- Mechanics.- Complex Numbers in Algebra.- Complex Numbers and Curves.- Complex Numbers and Functions.- Differential Geometry.- Noneuclidean Geometry.- Group Theory.- Hypercomplex Numbers.- Algebraic Number Theory.- Topology.- Sets, Logic, and Computation.- Bibliography.- Index.
by "Nielsen BookData"