The thermophysics of porous media
著者
書誌事項
The thermophysics of porous media
(Chapman & Hall/CRC monographs and surveys in pure and applied mathematics, v. 126)
Chapman & Hall/CRC, c2002
大学図書館所蔵 全21件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Models for the mechanical behavior of porous media introduced more than 50 years ago are still relied upon today, but more recent work shows that, in some cases, they may violate the laws of thermodynamics. In The Thermophysics of Porous Media, the author shows that physical consistency requires a unique description of dynamic processes that involve porous media, and that new dynamic variables-porosity, saturation, and megascale concentration-naturally enter into the large-scale description of porous media. The new degrees of freedom revealed in this study predict new dynamic processes that are not associated with compressional motions.
The book details the construction of a Lorentz invariant thermodynamic lattice gas model and shows how the associated nonrelativistic, Galilean invariant model can be used to describe flow in porous media. The author develops the equations of seismic wave propagation in porous media, the associated boundary conditions, and surface waves. He also constructs the equations for both immiscible and miscible flows in porous media and their related instability problems.
The implications of the physical theory presented in this book are significant, particularly in applications in geophysics and the petroleum industry. The Thermophysics of Porous Media offers a unique opportunity to examine the dynamic role that porosity plays in porous materials.
目次
Mathematical Averaging Theorems. Thermomechanics. Boundary Conditions. Seismic Wave Propagation. Equilibrium Thermodynamics of Deformation. Equilibrium Thermodynamics of Phase Interactions. Non-Equilibrium Thermodynamics. Thermodynamic Automata Models. Immiscible Flow. Miscible Flow. Granular Flow. References.
「Nielsen BookData」 より