Stochastic analysis on manifolds
著者
書誌事項
Stochastic analysis on manifolds
(Graduate studies in mathematics, v. 38)
American Mathematical Society, c2002
大学図書館所蔵 全50件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 275-278
Includes index
内容説明・目次
内容説明
Probability theory has become a convenient language and a useful tool in many areas of modern analysis. The main purpose of this book is to explore part of this connection concerning the relations between Brownian motion on a manifold and analytical aspects of differential geometry. A dominant theme of the book is the probabilistic interpretation of the curvature of a manifold.The book begins with a brief review of stochastic differential equations on Euclidean space. After presenting the basics of stochastic analysis on manifolds, the author introduces Brownian motion on a Riemannian manifold and studies the effect of curvature on its behavior. He then applies Brownian motion to geometric problems and vice versa, using many well-known examples, e.g., short-time behavior of the heat kernel on a manifold and probabilistic proofs of the Gauss-Bonnet-Chem theorem and the Atiyah-Singer index theorem for Dirac operators. The book concludes with an introduction to stochastic analysis on the path space over a Riemannian manifold.
目次
Introduction Stochastic differential equations and diffusions Basic stochastic differential geometry Brownian motion on manifolds Brownian motion and heat kernel Short-time asymptotics Further applications Brownian motion and analytic index theorems Analysis on path spaces Notes and comments General notations Bibliography Index.
「Nielsen BookData」 より