Stochastic analysis on manifolds

Author(s)
Bibliographic Information

Stochastic analysis on manifolds

Elton P. Hsu

(Graduate studies in mathematics, v. 38)

American Mathematical Society, c2002

Search this Book/Journal
Note

Bibliography: p. 275-278

Includes index

Description and Table of Contents

Description

Probability theory has become a convenient language and a useful tool in many areas of modern analysis. The main purpose of this book is to explore part of this connection concerning the relations between Brownian motion on a manifold and analytical aspects of differential geometry. A dominant theme of the book is the probabilistic interpretation of the curvature of a manifold.The book begins with a brief review of stochastic differential equations on Euclidean space. After presenting the basics of stochastic analysis on manifolds, the author introduces Brownian motion on a Riemannian manifold and studies the effect of curvature on its behavior. He then applies Brownian motion to geometric problems and vice versa, using many well-known examples, e.g., short-time behavior of the heat kernel on a manifold and probabilistic proofs of the Gauss-Bonnet-Chem theorem and the Atiyah-Singer index theorem for Dirac operators. The book concludes with an introduction to stochastic analysis on the path space over a Riemannian manifold.

Table of Contents

Introduction Stochastic differential equations and diffusions Basic stochastic differential geometry Brownian motion on manifolds Brownian motion and heat kernel Short-time asymptotics Further applications Brownian motion and analytic index theorems Analysis on path spaces Notes and comments General notations Bibliography Index.

by "Nielsen BookData"

Related Books: 1-1 of 1
Details
Page Top