Stochastic analysis on manifolds
Author(s)
Bibliographic Information
Stochastic analysis on manifolds
(Graduate studies in mathematics, v. 38)
American Mathematical Society, c2002
Available at 50 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 275-278
Includes index
Description and Table of Contents
Description
Probability theory has become a convenient language and a useful tool in many areas of modern analysis. The main purpose of this book is to explore part of this connection concerning the relations between Brownian motion on a manifold and analytical aspects of differential geometry. A dominant theme of the book is the probabilistic interpretation of the curvature of a manifold.The book begins with a brief review of stochastic differential equations on Euclidean space. After presenting the basics of stochastic analysis on manifolds, the author introduces Brownian motion on a Riemannian manifold and studies the effect of curvature on its behavior. He then applies Brownian motion to geometric problems and vice versa, using many well-known examples, e.g., short-time behavior of the heat kernel on a manifold and probabilistic proofs of the Gauss-Bonnet-Chem theorem and the Atiyah-Singer index theorem for Dirac operators. The book concludes with an introduction to stochastic analysis on the path space over a Riemannian manifold.
Table of Contents
Introduction Stochastic differential equations and diffusions Basic stochastic differential geometry Brownian motion on manifolds Brownian motion and heat kernel Short-time asymptotics Further applications Brownian motion and analytic index theorems Analysis on path spaces Notes and comments General notations Bibliography Index.
by "Nielsen BookData"