Asymptotic modelling of fluid flow phenomena
著者
書誌事項
Asymptotic modelling of fluid flow phenomena
(Fluid mechanics and its applications, v. 64)
Kluwer Academic, c2002
大学図書館所蔵 全19件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 527-545)
内容説明・目次
内容説明
for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the 3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful.
目次
Preface and Acknowledgments. 1. Introductory Comments and Summary.
Part I: Setting the Scene. 2. Newtonian Fluid Flow: Equations and Conditions. 3. Some Basic Aspects of Asymptotic Analysis and Modelling. 4. Useful Limiting Forms of the NS-F Equations.
Part II: Main Asymptotic Models. 5. The Navier-Fourier Viscous Incompressible Model. 6. The Inviscid/Nonviscous Euler Model and Some Hydro-Aerodynamics Problems. 7. Boundary-Layer Models for High-Reynolds Numbers. 8. Some Models of Nonlinear Acoustics. 9. Low-Reynolds Numbers asymptotics.
Part III: Three Specific Asymptotic Models. 10. Asymptotic Modelling of Thermal Convection and Interfacial Phenomena. 11. Meteo-Fluid-Dynamics Models. 12. Singular Coupling and the Triple-Deck Model.
References.
「Nielsen BookData」 より