Spectral decomposition of a covering of GL(r) : the Borel case

書誌事項

Spectral decomposition of a covering of GL(r) : the Borel case

Heng Sun

(Memoirs of the American Mathematical Society, no. 743)

American Mathematical Society, 2002

大学図書館所蔵 件 / 16

この図書・雑誌をさがす

注記

"March 2002, volume 156, number 743 (fourth of 5 numbers)"

Includes bibliography (p. 61) and index

内容説明・目次

内容説明

Let $F$ be a number field and ${\bf A}$ the ring of adeles over $F$. Suppose $\overline{G({\bf A})}$ is a metaplectic cover of $G({\bf A})=GL(r,{\bf A})$ which is given by the $n$-th Hilbert symbol on ${\bf A}$. According to Langlands' theory of Eisenstein series, the decomposition of the right regular representation on $L^2\left(G(F)\backslash\overline{G({\bf A})}\right)$ can be understood in terms of the residual spectrum of Eisenstein series associated with cuspidal data on standard Levi subgroups $\overline{M}$. Under an assumption on the base field $F$, this paper calculates the spectrum associated with the diagonal subgroup $\overline{T}$. Specifically, the diagonal residual spectrum is at the point $\lambda=((r-1)/2n,(r-3)/2n,\cdots,(1-r)/2n)$.Each irreducible summand of the corresponding representation is the Langlands quotient of the space induced from an irreducible automorphic representation of $\overline{T}$, which is invariant under symmetric group $\mathfrak{S}_r$, twisted by an unramified character of $\overline{T}$ whose exponent is given by $\lambda$.

目次

Introduction Preliminaries Local intertwining operators Spectrum associated with the diagonal subgroup Contour integration (after MW) Bibliography Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ