Spectral decomposition of a covering of GL(r) : the Borel case
著者
書誌事項
Spectral decomposition of a covering of GL(r) : the Borel case
(Memoirs of the American Mathematical Society, no. 743)
American Mathematical Society, 2002
大学図書館所蔵 件 / 全16件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"March 2002, volume 156, number 743 (fourth of 5 numbers)"
Includes bibliography (p. 61) and index
内容説明・目次
内容説明
Let $F$ be a number field and ${\bf A}$ the ring of adeles over $F$. Suppose $\overline{G({\bf A})}$ is a metaplectic cover of $G({\bf A})=GL(r,{\bf A})$ which is given by the $n$-th Hilbert symbol on ${\bf A}$. According to Langlands' theory of Eisenstein series, the decomposition of the right regular representation on $L^2\left(G(F)\backslash\overline{G({\bf A})}\right)$ can be understood in terms of the residual spectrum of Eisenstein series associated with cuspidal data on standard Levi subgroups $\overline{M}$. Under an assumption on the base field $F$, this paper calculates the spectrum associated with the diagonal subgroup $\overline{T}$. Specifically, the diagonal residual spectrum is at the point $\lambda=((r-1)/2n,(r-3)/2n,\cdots,(1-r)/2n)$.Each irreducible summand of the corresponding representation is the Langlands quotient of the space induced from an irreducible automorphic representation of $\overline{T}$, which is invariant under symmetric group $\mathfrak{S}_r$, twisted by an unramified character of $\overline{T}$ whose exponent is given by $\lambda$.
目次
Introduction Preliminaries Local intertwining operators Spectrum associated with the diagonal subgroup Contour integration (after MW) Bibliography Index.
「Nielsen BookData」 より