Smooth molecular decompositions of functions and singular integral operators
著者
書誌事項
Smooth molecular decompositions of functions and singular integral operators
(Memoirs of the American Mathematical Society, no. 742)
American Mathematical Society, 2002
大学図書館所蔵 件 / 全17件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"March 2002, volume 156, number 742 (third of 5 numbers)"
Includes bibliography (p. 73-74)
内容説明・目次
内容説明
Under minimal assumptions on a function $\psi$ we obtain wavelet-type frames of the form $\psi_{j,k}(x) = r^{(1/2)n j} \psi(r^j x - sk), j \in \integer, k \in \integer^n,$ for some $r > 1$ and $s > 0$. This collection is shown to be a frame for a scale of Triebel-Lizorkin spaces (which includes Lebesgue, Sobolev and Hardy spaces) and the reproducing formula converges in norm as well as pointwise a.e. The construction follows from a characterization of those operators which are bounded on a space of smooth molecules. This characterization also allows us to decompose a broad range of singular integral operators in terms of smooth molecules.
目次
Main results Molecular decompositions of operators Frames Maximal theorems and equi-convergence Appendix. Proof of basic estimates.
「Nielsen BookData」 より