The Steiner tree problem : a tour through graphs, algorithms, and complexity
著者
書誌事項
The Steiner tree problem : a tour through graphs, algorithms, and complexity
(Advanced lectures in mathematics)
Friedr. Vieweg & Sohn, 2002
大学図書館所蔵 全23件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibilography and index
内容説明・目次
内容説明
In recent years, algorithmic graph theory has become increasingly important as a link between discrete mathematics and theoretical computer science. This textbook introduces students of mathematics and computer science to the interrelated fields of graphs theory, algorithms and complexity.
目次
1 Basics I: Graphs.- 1.1 Introduction to graph theory.- 1.2 Excursion: Random graphs.- 2 Basics II: Algorithms.- 2.1 Introduction to algorithms.- 2.2 Excursion: Fibonacci heaps and amortized time.- 3 Basics III: Complexity.- 3.1 Introduction to complexity theory.- 3.2 Excursion: More NP-complete problems.- 4 Special Terminal Sets.- 4.1 The shortest path problem.- 4.2 The minimum spanning tree problem.- 4.3 Excursion: Matroids and the greedy algorithm.- 5 Exact Algorithms.- 5.1 The enumeration algorithm.- 5.2 The Dreyfus-Wagner algorithm.- 5.3 Excursion: Dynamic programming.- 6 Approximation Algorithms.- 6.1 A simple algorithm with performance ratio 2.- 6.2 Improving the time complexity.- 6.3 Excursion: Machine scheduling.- 7 More on Approximation Algorithms.- 7.1 Minimum spanning trees in hypergraphs.- 7.2 Improving the performance ratio I.- 7.3 Excursion: The complexity of optimization problems.- 8 Randomness Helps.- 8.1 Probabilistic complexity classes.- 8.2 Improving the performance ratio II.- 8.3 An almost always optimal algorithm.- 8.4 Excursion: Primality and cryptography.- 9 Limits of Approximability.- 9.1 Reducing optimization problems.- 9.2 APX-completeness.- 9.3 Excursion: Probabilistically checkable proofs.- 10 Geometric Steiner Problems.- 10.1 A characterization of rectilinear Steiner minimum trees.- 10.2 The Steiner ratios.- 10.3 An almost linear time approximation scheme.- 10.4 Excursion: The Euclidean Steiner problem.- Symbol Index.
「Nielsen BookData」 より