Generalized analytic continuation
著者
書誌事項
Generalized analytic continuation
(University lecture series, v. 25)
American Mathematical Society, c2002
大学図書館所蔵 全36件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 141-146
Includes index
内容説明・目次
内容説明
The theory of generalized analytic continuation studies continuations of meromorphic functions in situations where traditional theory says there is a natural boundary. This broader theory touches on a remarkable array of topics in classical analysis, as described in the book. This book addresses the following questions: when can we say, in some reasonable way, that component functions of a meromorphic function on a disconnected domain, are 'continuations' of each other? What role do such 'continuations' play in certain aspects of approximation theory and operator theory? The authors use the strong analogy with the summability of divergent series to motivate the subject. In this vein, for instance, theorems can be described as being 'Abelian' or 'Tauberian'. The introductory overview carefully explains the history and context of the theory.The authors begin with a review of the works of Poincare, Borel, Wolff, Walsh, and Goncar, on continuation properties of 'Borel series' and other meromorphic functions that are limits of rapidly convergent sequences of rational functions. They then move on to the work of Tumarkin, who looked at the continuation properties of functions in the classical Hardy space of the disk in terms of the concept of 'pseudocontinuation'. Tumarkin's work was seen in a different light by Douglas, Shapiro, and Shields in their discovery of a characterization of the cyclic vectors for the backward shift operator on the Hardy space.The authors cover this important concept of 'pseudocontinuation' quite thoroughly since it appears in many areas of analysis. They also add a new and previously unpublished method of 'continuation' to the list, based on formal multiplication of trigonometric series, which can be used to examine the backward shift operator on many spaces of analytic functions. The book attempts to unify the various types of 'continuations' and suggests some interesting open questions.
目次
Overview Notation and preliminaries The Poincare example Borel's ideas and their later development Goncar continuation Pseudocontinuation A continuation involving almost periodic functions Continuation by formal multiplication of series Generalized analytic continuation List of symbols Bibliography Index.
「Nielsen BookData」 より