Approximation and entropy numbers of Volterra operators with application to Brownian motion
Author(s)
Bibliographic Information
Approximation and entropy numbers of Volterra operators with application to Brownian motion
(Memoirs of the American Mathematical Society, no. 745)
American Mathematical Society, 2002
Available at 17 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"May 2002, volume 157, number 745 (first of 5 numbers)"
Includes bibliography (p. 86-87)
Description and Table of Contents
Description
We consider the Volterra integral operator $T_{\rho,\psi}:L_p(0,\infty)\to L_q(0,\infty)$ for $10$. We also obtain similar sharp estimates for the approximation numbers of $T_{\rho,\psi}$, thus extending former results due to Edmunds et al. and Evans et al..The entropy estimates are applied to investigate the small ball behaviour of weighted Wiener processes $\rho W$ in the $L_q(0,\infty)$-norm, $1
Table of Contents
Introduction Main results Scale transformations Upper estimates for entropy numbers Lower estimates for entropy numbers Approximation numbers Small ball behaviour of weighted Wiener processes Appendix Bibliography.
by "Nielsen BookData"