The relativistic Boltzmann equation : theory and applications
著者
書誌事項
The relativistic Boltzmann equation : theory and applications
(Progress in mathematical physics / editors-in-chief, Anne Boutet de Monvel, Gerald Kaiser, v. 22)
Birkhäuser, c2002
大学図書館所蔵 全30件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
The aim of this book is to present the theory and applications of the relativistic Boltzmann equation in a self-contained manner, even for those readers who have no familiarity with special and general relativity. Though an attempt is made to present the basic concepts in a complete fashion, the style of presentation is chosen to be appealing to readers who want to understand how kinetic theory is used for explicit calculations. The book will be helpful not only as a textbook for an advanced course on relativistic kinetic theory but also as a reference for physicists, astrophysicists and applied mathematicians who are interested in the theory and applications of the relativistic Boltzmann equation.
目次
1 Special Relativity.- 1.1 Introduction.- 1.2 Lorentz transformations.- 1.3 Tensors in Minkowski spaces.- 1.4 Relativistic mechanics.- 1.4.1 Four-velocity.- 1.4.2 Minkowski force.- 1.4.3 Elastic collisions.- 1.4.4 Relative velocity.- 1.5 Electrodynamics in free space.- 1.5.1 Maxwell equations.- 1.5.2 Energy-momentum tensor.- 1.5.3 Retarded potentials.- 2 Relativistic Boltzmann Equation.- 2.1 Single non-degenerate gas.- 2.2 Single degenerate gas.- 2.3 General equation of transfer.- 2.4 Summational invariants.- 2.5 Macroscopic description.- 2.6 Local Lorentz rest frame.- 2.7 Equilibrium distribution function.- 2.8 Trend to equilibrium. H-theorem.- 2.9 The projector ???.- 2.10 Equilibrium states.- 3 Fields in Equilibrium.- 3.1 The general case.- 3.2 Non-degenerate gas.- 3.2.1 Modified Bessel function of second kind.- 3.2.2 Expressions for n, e and p.- 3.2.3 Non-relativistic limit.- 3.2.4 Ultra-relativistic limit.- 3.3 Degenerate relativistic Fermi gas.- 3.3.1 Completely degenerate relativistic Fermi gas.- 3.3.2 White dwarf stars.- 3.3.3 Strongly degenerate relativistic Fermi gas.- 3.4 Degenerate relativistic Bose gas.- 3.4.1 Some useful integrals.- 3.4.2 Relativistic Bose-Einstein condensation.- 4 Thermomechanics of Relativistic Fluids.- 4.1 Introduction.- 4.2 Thermodynamics of perfect fluids.- 4.3 Eckart decomposition.- 4.4 Landau and Lifshitz decomposition.- 4.5 Thermodynamics of a single fluid.- 5 Chapman-Enskog Method.- 5.1 Introduction.- 5.2 Simplified version.- 5.3 The integrals Il, I2 and I3.- 5.4 Transport coefficients.- 5.4.1 Hard-sphere particles.- 5.4.2 Israel particles.- 5.5 Formal version.- 5.5.1 Integral equations.- 5.5.2 Second approximation.- 5.5.3 Orthogonal polynomials.- 5.5.4 Expansion in orthogonal polynomials.- 5.6 Appendix.- 6 Method of Moments.- 6.1 Introduction.- 6.2 Grad distribution function.- 6.3 Constitutive equations for Tassry and Pass.- 6.4 Linearized field equations.- 6.5 Five-field theory.- 6.5.1 Laws of Navier-Stokes and Fourier.- 6.5.2 Linearized Burnett equations.- 6.6 Maxwellian particles.- 6.7 Combined method of Chapman-Enskog and Grad.- 7 Chemically Reacting Gas Mixtures.- 7.1 Introduction.- 7.2 Boltzmann and transfer equations.- 7.3 Maxwell-Juttner distribution function.- 7.4 Thermodynamics of mixtures.- 7.5 Transport coefficients.- 7.6 Onsager reciprocity relations.- 8 Model Equations.- 8.1 Introduction.- 8.2 The characteristic time.- 8.3 Single non-degenerate gas.- 8.3.1 The model of Marle.- 8.3.2 The model of Anderson and Witting.- 8.3.3 Comparison of the models.- 8.4 Single degenerate gas.- 8.4.1 Non-zero rest mass.- 8.4.2 Zero rest mass.- 8.5 Relativistic ionized gases.- 8.5.1 Boltzmann and balance equations.- 8.5.2 Decomposition with respect to the four-velocity.- 8.5.3 Ohm's law.- 8.6 Appendix.- 9 Wave Phenomena in a Relativistic Gas.- 9.1 Introduction.- 9.2 Propagation of discontinuities.- 9.3 Small oscillations.- 9.3.1 Boltzmann equation.- 9.3.2 Continuum-like theories.- 9.4 Shock waves.- 9.4.1 Continuum theory.- 9.4.2 Boltzmann equation.- 10 Tensor Calculus in General Coordinates.- 10.1 Introduction.- 10.2 Tensor components in general coordinates.- 10.3 Affine connection.- 10.4 Covariant differentiation.- 10.5 Spatial metric tensor.- 10.6 Special relativity in general coordinates.- 11 Riemann Spaces and General Relativity.- 11.1 Introduction.- 11.2 Tensors in Riemannian spaces.- 11.3 Curvature tensor.- 11.4 Physical principles of general relativity.- 11.5 Mechanics in gravitational fields.- 11.5.1 Four-velocity.- 11.5.2 Equations of motion.- 11.6 Electrodynamics in gravitational fields.- 11.7 Perfect fluids.- 11.8 Einstein's field equations.- 11.9 Solution for weak fields.- 11.10 Exact solutions of Einstein's field equations.- 11.11 Robertson-Walker metric.- 11.11.1 Geometrical meaning.- 11.11.2 Determination of the energy density.- 11.11.3 Determination of K(t).- 12 Boltzmann Equation in Gravitational Fields.- 12.1 Introduction.- 12.2 Transformation of volume elements.- 12.3 Boltzmann equation.- 12.4 Transfer equation.- 12.5 Equilibrium states.- 12.6 Boltzmann equation in a spherically symmetric gravitational field.- 12.7 Dynamic pressure in a homogeneous and isotropic universe.- 13 The Vlasov Equation and Related Systems.- 13.1 Introduction.- 13.2 The Vlasov-Maxwell system.- 13.3 The Vlasov-Einstein system.- 13.4 Steady Vlasov-Einstein system in case of spherical symmetry.- 13.5 The threshold of black hole formation.- 13.6 Cosmology with the Vlasov-Einstein system.- Physical Constants.- Modified Bessel Function.
「Nielsen BookData」 より