Lie algebras graded by the root systems BCr, r ≧ 2
著者
書誌事項
Lie algebras graded by the root systems BCr, r ≧ 2
(Memoirs of the American Mathematical Society, no. 751)
American Mathematical Society, 2002
大学図書館所蔵 件 / 全18件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"July 2002, volume 158, number 751 (second of 4 numbers)"
Includes bibliographical references (p. 156-158)
内容説明・目次
内容説明
Classifies the Lie algebras of characteristic zero graded by the finite nonreduced root systems $\mathrm{BC}_r$ for $r geq 2$ and determines their derivations, central extensions, and invariant forms.
目次
Introduction The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra, $r\ge 3$ (excluding type $\mathrm{D}_3)$ Models for $\mathrm{BC}_r$-graded Lie algebras, $r\ge 3$ (excluding type $\mathrm{D}_3)$ The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Central extensions, derivations and invariant forms Models of $\mathrm{BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Appendix: Peirce decompositions in structurable algebras References.
「Nielsen BookData」 より