Rings close to regular
Author(s)
Bibliographic Information
Rings close to regular
(Mathematics and its applications, v. 545)
Kluwer Academic, c2002
Available at / 13 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. [315]-347) and index
Description and Table of Contents
Description
Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.
Table of Contents
Preface. Symbols. 1. Some Basic Facts of Ring Theory. 2. Regular and Strongly Regular Rings. 3. Rings of Bounded Index and Io-rings. 4. Semiregular and Weakly Regular Rings. 5. Max Rings and pi-regular Rings. 6. Exchange Rings and Modules. 7. Separative Exchange Rings. Bibliography. Index.
by "Nielsen BookData"