書誌事項

Rings close to regular

by Askar A. Tuganbaev

(Mathematics and its applications, v. 545)

Kluwer Academic, c2002

大学図書館所蔵 件 / 13

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [315]-347) and index

内容説明・目次

内容説明

Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.

目次

Preface. Symbols. 1. Some Basic Facts of Ring Theory. 2. Regular and Strongly Regular Rings. 3. Rings of Bounded Index and Io-rings. 4. Semiregular and Weakly Regular Rings. 5. Max Rings and pi-regular Rings. 6. Exchange Rings and Modules. 7. Separative Exchange Rings. Bibliography. Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA59476209
  • ISBN
    • 1402008511
  • 出版国コード
    ne
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Dordrecht
  • ページ数/冊数
    xii, 350 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ