Evolution equations in scales of banach spaces

書誌事項

Evolution equations in scales of banach spaces

Oliver Caps

(Teubner-Texte zur Mathematik, Bd. 140)

B.G. Teubner, 2002

大学図書館所蔵 件 / 7

この図書・雑誌をさがす

注記

Bibliography: p. [295]-306

Includes index

内容説明・目次

内容説明

The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem. Many applications illustrate the generality of the approach. In particular, using the Fefferman-Phong inequality unifying results on parabolic and hyperbolic equations generalizing classical ones and a unified treatment of Navier-Stokes and Euler equations is described. Assuming only basic knowledge in analysis and functional analysis the book provides all mathematical tools and is aimed for students, graduates, researchers, and lecturers.

目次

Tools from functional analysis - Well-posedness of the time-dependent linear Cauchy problem - Quasilinear evolution equations - Applications to linear, time-dependent evolution equations - Applications to quasilinear evolution equations

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA60248336
  • ISBN
    • 3519003767
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Stuttgart
  • ページ数/冊数
    309 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ