Adaptive multiscale schemes for conservation laws
著者
書誌事項
Adaptive multiscale schemes for conservation laws
(Lecture notes in computational science and engineering, vol. 27)
Springer, c2003
大学図書館所蔵 全9件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by the development of robust and high-order accurate numerical algorithms as well as the construc tion of enhanced computer hardware, e. g. , parallel and vector architectures, workstation clusters. All these improvements allow the numerical simulation of real world problems arising for instance in automotive and aviation indus try. Nowadays numerical simulations may be considered as an indispensable tool in the design of engineering devices complementing or avoiding expen sive experiments. In order to obtain qualitatively as well as quantitatively reliable results the complexity of the applications continuously increases due to the demand of resolving more details of the real world configuration as well as taking better physical models into account, e. g. , turbulence, real gas or aeroelasticity. Although the speed and memory of computer hardware are currently doubled approximately every 18 months according to Moore's law, this will not be sufficient to cope with the increasing complexity required by uniform discretizations. The future task will be to optimize the utilization of the available re sources. Therefore new numerical algorithms have to be developed with a computational complexity that can be termed nearly optimal in the sense that storage and computational expense remain proportional to the "inher ent complexity" (a term that will be made clearer later) problem. This leads to adaptive concepts which correspond in a natural way to unstructured grids.
目次
1 Model Problem and Its Discretization.- 1.1 Conservation Laws.- 1.2 Finite Volume Methods.- 2 Multiscale Setting.- 2.1 Hierarchy of Meshes.- 2.2 Motivation.- 2.3 Box Wavelet.- 2.3.1 Box Wavelet on a Cartesian Grid Hierarchy.- 2.3.2 Box Wavelet on an Arbitrary Nested Grid Hierarchy.- 2.4 Change of Stable Completion.- 2.5 Box Wavelet with Higher Vanishing Moments.- 2.5.1 Definition and Construction.- 2.5.2 A Univariate Example.- 2.5.3 A Remark on Compression Rates.- 2.6 Multiscale Transformation.- 3 Locally Refined Spaces.- 3.1 Adaptive Grid and Significant Details.- 3.2 Grading.- 3.3 Local Multiscale Transformation.- 3.4 Grading Parameter.- 3.5 Locally Uniform Grids.- 3.6 Algorithms: Encoding, Thresholding, Grading, Decoding.- 3.7 Conservation Property.- 3.8 Application to Curvilinear Grids.- 4 Adaptive Finite Volume Scheme.- 4.1 Construction.- 4.1.1 Strategies for Local Flux Evaluation.- 4.1.2 Strategies for Prediction of Details.- 4.2 A gorithms: Initial data, Prediction, Fluxes and Evolution.- 5 Error Analysis.- 5.1 Perturbation Error.- 5.2 Stability of Approximation.- 5.3 Reliability of Prediction.- 6 Data Structures and Memory Management.- 6.1 Algorithmic Requirements and Design Criteria.- 6.2 Hashing.- 6.3 Data Structures.- 7 Numerical Experiments.- 7.1 Parameter Studies.- 7.1.1 Test Configurations.- 7.1.2 Discretization.- 7.1.3 Computational Complexity and Stability.- 7.1.4 Hash Parameters.- 7.2 Real World Application.- 7.2.1 Configurations.- 7.2.2 Discretization.- 7.2.3 Discussion of Results.- A Plots of Numerical Experiments.- B The Context of Biorthogonal Wavelets.- B.1 General Setting.- B.1.1 Multiscale Basis.- B.1.2 Stable Completion.- B.1.3 Multiscale Transformation.- B.2 Biorthogonal Wavelets of the Box Function.- B.2.1 Haar Wavelets.- B.2.2 Biorthogonal Wavelets on the Real Line.- References.- List of Figures.- List of Tables.- Notation.
「Nielsen BookData」 より