Numerical solution of SDE through computer experiments
Author(s)
Bibliographic Information
Numerical solution of SDE through computer experiments
(Universitext)
Springer, 2003
Corr. 3rd printing
- Other Title
-
Numerical solution of stochastic differential equations through computer experiments
Available at 14 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [271]-278) and index
Author's comments on the third printing--Preface
Description and Table of Contents
Description
This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.
Table of Contents
1: Background on Probability and Statistics.- 1.1 Probability and Distributions.- 1.2 Random Number Generators.- 1.3 Moments and Conditional Expectations.- 1.4 Random Sequences.- 1.5 Testing Random Numbers.- 1.6 Markov Chains as Basic Stochastic Processes.- 1.7 Wiener Processes.- 2: Stochastic Differential Equations.- 2.1 Stochastic Integration.- 2.2 Stochastic Differential Equations.- 2.3 Stochastic Taylor Expansions.- 3: Introduction to Discrete Time Approximation.- 3.1 Numerical Methods for Ordinary Differential Equations.- 3.2 A Stochastic Discrete Time Simulation.- 3.3 Pathwise Approximation and Strong Convergence.- 3.4 Approximation of Moments and Weak Convergence.- 3.5 Numerical Stability.- 4: Strong Approximations.- 4.1 Strong Taylor Schemes.- 4.2 Explicit Strong Schemes.- 4.3 Implicit Strong Approximations.- 4.4 Simulation Studies.- 5: Weak Approximations.- 5.1 Weak Taylor Schemes.- 5.2 Explicit Weak Schemes and Extrapolation Methods.- 5.3 Implicit Weak Approximations.- 5.4 Simulation Studies.- 5.5 Variance Reducing Approximations.- 6: Applications.- 6.1 Visualization of Stochastic Dynamics.- 6.2 Testing Parametric Estimators.- 6.3 Filtering.- 6.4 Functional Integrals and Invariant Measures.- 6.5 Stochastic Stability and Bifurcation.- 6.6 Simulation in Finance.- References.- List of PC-Exercises.- Frequently Used Notations.
by "Nielsen BookData"