The theory of search games and rendezvous
著者
書誌事項
The theory of search games and rendezvous
(International series in operations research & management science, 55)
Kluwer Academic Pub., c2003
大学図書館所蔵 全16件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Search Theory is one of the original disciplines within the field of Operations Research. It deals with the problem faced by a Searcher who wishes to minimize the time required to find a hidden object, or "target. " The Searcher chooses a path in the "search space" and finds the target when he is sufficiently close to it. Traditionally, the target is assumed to have no motives of its own regarding when it is found; it is simply stationary and hidden according to a known distribution (e. g. , oil), or its motion is determined stochastically by known rules (e. g. , a fox in a forest). The problems dealt with in this book assume, on the contrary, that the "target" is an independent player of equal status to the Searcher, who cares about when he is found. We consider two possible motives of the target, and divide the book accordingly. Book I considers the zero-sum game that results when the target (here called the Hider) does not want to be found. Such problems have been called Search Games (with the "ze- sum" qualifier understood). Book II considers the opposite motive of the target, namely, that he wants to be found. In this case the Searcher and the Hider can be thought of as a team of agents (simply called Player I and Player II) with identical aims, and the coordination problem they jointly face is called the Rendezvous Search Problem.
目次
Preface. Frequently Used Notations. Acknowledgement. Book I: Search Games. 1. Introduction to Search Games. Part One: Search Games in Compact Spaces. 2. General Framework. 3. Search for an Immobile Hider. 4. Search for a Mobile Hider. 5. Miscellaneous Search Games. Part Two: Search Games in Unbounded Domains. 6. General Framework. 7. On Minimax Properties of Geometric Trajectories. 8. Search on the Infinite Line. 9. Star and Plan Search. Book II: Rendezvous Theory. 10. Introduction to Rendezvous Search. 11. Elementary Results and Samples. Part Three: Rendezvous Search on Compact Spaces. 12. Rendezvous Values of a Compact Symmetric Region. 13. Rendezvous on Labeled Networks. 14. Asymmetric Rendezvous on an Unlabeled Circle. 15. Rendezvous on a Graph. Part Four: Rendezvous Search on Unbounded Domains. 16. Asymmetric Rendezvous on the Line (ARPL). 17. Other Rendezvous Problems on the Line. 18. Rendezvous in Higher Dimensions. Appendices. A: A Minimax Theorem for Zero-Sum Games. B: Theory of Alternating Search. C: Rendezvous-Evasion Problems. Bibliography. Index.
「Nielsen BookData」 より