A parallel multilevel partition of unity method for elliptic partial differential equations

Author(s)

    • Schweitzer, Marc Alexander

Bibliographic Information

A parallel multilevel partition of unity method for elliptic partial differential equations

Marc Alexander Schweitzer

(Lecture notes in computational science and engineering, 29)

Springer, c2003

Available at  / 7 libraries

Search this Book/Journal

Note

Includes index

Bibliography: p. [183]-191

Description and Table of Contents

Description

the solution or its gradient. These new discretization techniques are promising approaches to overcome the severe problem of mesh-generation. Furthermore, the easy coupling of meshfree discretizations of continuous phenomena to dis crete particle models and the straightforward Lagrangian treatment of PDEs via these techniques make them very interesting from a practical as well as a theoretical point of view. Generally speaking, there are two different types of meshfree approaches; first, the classical particle methods [104, 105, 107, 108] and second, meshfree discretizations based on data fitting techniques [13, 39]. Traditional parti cle methods stem from physics applications like Boltzmann equations [3, 50] and are also of great interest in the mathematical modeling community since many applications nowadays require the use of molecular and atomistic mod els (for instance in semi-conductor design). Note however that these methods are Lagrangian methods; i. e. , they are based On a time-dependent formulation or conservation law and can be applied only within this context. In a particle method we use a discrete set of points to discretize the domain of interest and the solution at a certain time. The PDE is then transformed into equa tions of motion for the discrete particles such that the particles can be moved via these equations. After time discretization of the equations of motion we obtain a certain particle distribution for every time step.

Table of Contents

1 Introduction.- 2 Partition of Unity Method.- 2.1 Construction of a Partition of Unity Space.- 2.2 Properties.- 2.3 Basic Convergence Theory.- 3 Treatment of Elliptic Equations.- 3.1 Galerkin Discretization.- 3.2 Boundary Conditions.- 3.3 Numerical Results.- 4 Multilevel Solution of the Resulting Linear System.- 4.1 Multilevel Iterative Solvers.- 4.2 Multilevel Partition of Unity Method.- 4.3 Numerical Results.- 5 Tree Partition of Unity Method.- 5.1 Single Level Cover Construction.- 5.2 Construction of a Sequence of PUM Spaces.- 5.3 Numerical Results.- 6 Parallelization and Implementational Details.- 6.1 Parallel Data Structures.- 6.2 Parallel Tree Partition of Unity Method.- 6.3 Numerical Results.- 7 Concluding Remarks.- Treatment of other Types of Equations.- A.1 Parabolic Equations.- A.2 Hyperbolic Equations.- Transformation of Keys.- Color Plates.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA61918423
  • ISBN
    • 3540003517
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Berlin ; Tokyo
  • Pages/Volumes
    194 p.
  • Size
    24 cm
  • Parent Bibliography ID
Page Top