High-frequency bipolar transistors : physics, modeling, applications

著者
    • Reisch, M. (...Michael...)
書誌事項

High-frequency bipolar transistors : physics, modeling, applications

M. Reisch

(Advanced microelectronics, 11)

Springer, c2003

この図書・雑誌をさがす
注記

Includes bibliographical references and index

内容説明・目次

内容説明

This modern book-length treatment gives a detailed presentation of high-frequency bipolar transistors in silicon or silicon-germanium technology, with particular emphasis placed on today's advanced compact models and their physical foundations.

目次

1. An Introductory Survey.- 1.1 History.- 1.1.1 Early Developments.- 1.1.2 The First Transistors.- 1.1.3 Silicon Transistors.- 1.1.4 Integrated Bipolar Transistors.- 1.1.5 Heterojunction Bipolar Transistors.- 1.1.6 CAD, Device Modeling.- 1.1.7 Applications.- 1.2 Devices, Circuits, Compact Models.- 1.2.1 Circuit Elements.- 1.2.2 Nonlinear Network Elements, Small-Signal Description.- 1.2.3 Two-Ports.- 1.2.4 Device Modeling.- 1.3 Semiconductors.- 1.3.1 Electrons and Holes.- 1.3.2 Thermal Equilibrium.- 1.3.3 Drift and Diffusion Currents.- 1.3.4 Generation and Recombination.- 1.3.5 Basic Semiconductor Equations.- 1.4 PN Junctions.- 1.4.1 PN Junctions in Thermal Equilibrium.- 1.4.2 Forward-Biased PN Junction.- 1.4.3 Reverse-Biased PN Junction.- 1.4.4 Stored Charge.- 1.4.5 Switching, Charge-Control Theory.- 1.4.6 Epitaxial Diodes.- 1.5 Bipolar Transistor Principles.- 1.5.1 Modes of Operation.- 1.5.2 Transfer Current.- 1.5.3 Current Gain.- 1.5.4 Transistor Amplifiers and Switches.- 1.5.5 Leakage Currents.- 1.5.6 Voltage Limits, Breakdown.- 1.5.7 Some Differences of Bipolar Transistors and MOSFETs.- 1.6 Elementary Large-Signal Models.- 1.6.1 The Elementary Transistor Model.- 1.6.2 Current-Voltage Characteristics.- 1.6.3 Charge Storage, Charge Control Model.- 1.6.4 Switching Operation.- 1.7 Elementary Small-Signal Models.- 1.7.1 Admittance Parameters.- 1.7.2 Hybrid Parameters.- 1.7.3 T-Equivalent Circuit.- 1.7.4 Frequency Limits.- 1.8 Noise Modeling.- 1.8.1 Noise and Noise Sources.- 1.8.2 Noise Circuit Analysis.- 1.8.3 Noisy Linear Two-Ports, Noise Figure.- 1.8.4 Bipolar-Transistor Noise Equivalent Circuit.- 1.8.5 Input-Referred Noise Sources.- 1.8.6 Noise Figure.- 1.9 Orders of Magnitude.- 1.10 References.- 2. Semiconductor Physics Required for Bipolar-Transistor Modeling.- 2.1 Band Structure.- 2.1.1 Bloch Functions.- 2.1.2 Temperature Dependence of Bandgap and Intrinsic Carrier Density.- 2.2 Thermal Equilibrium.- 2.2.1 Fermi-Dirac and Boltzmann Statistics.- 2.2.2 Ionization.- 2.3 The Boltzmann Equation.- 2.3.1 Collision Term.- 2.3.2 Thermal Equilibrium.- 2.3.3 Limits of Validity.- 2.3.4 Relaxation Times.- 2.4 The Drift-Diffusion Approximation.- 2.4.1 The Relaxation Time Approximation.- 2.4.2 Transport in Low Electric Fields.- 2.5 Hydrodynamic Model.- 2.5.1 Continuity Equation.- 2.5.2 Current Equation.- 2.5.3 Energy Balance Equation.- 2.6 Generation and Recombination.- 2.6.1 Shockley Read Hall Processes.- 2.6.2 Auger Recombination.- 2.6.3 Impact Ionization.- 2.6.4 Interband Tunneling.- 2.7 Heavily Doped Semiconductors.- 2.7.1 Modification of the Band Structure.- 2.7.2 Bandgap Narrowing in Silicon.- 2.8 Silicon Device Modeling in the Drift-Diffusion Approximation.- 2.8.1 Basic Equations of the Drift-Diffusion Approximation.- 2.8.2 Model Equations for Material Parameters.- 2.8.3 Compact Modeling.- 2.9 References.- 3. Physics and Modeling of Bipolar Junction Transistors.- 3.1 The Regional Approach.- 3.1.1 Drift Transistors - Homogeneous-Field Case.- 3.1.2 Transfer Current in Frequency and Time Domains.- 3.1.3 The Ebers-Moll Model.- 3.1.4 The Charge Control Model.- 3.1.5 Non-Quasi-Static Effects.- 3.2 Transfer Current, Early Effect.- 3.2.1 The Integral Charge Control Relation.- 3.2.2 Forward Operation, Early Voltage.- 3.2.3 Base Charge Partitioning.- 3.3 Emitter-Base Diode, Current Gain.- 3.3.1 Minority-Carrier Transport in Heavily Doped Silicon Emitters.- 3.3.2 Polycrystalline Emitter Contacts.- 3.3.3 Recombination in the Space Charge Layer.- 3.3.4 Reverse-Bias Currents, Breakdown.- 3.4 Base-Collector Diode, Breakdown.- 3.4.1 Multiplication Factor.- 3.4.2 Collector-Emitter Breakdown due to Impact Ionization.- 3.4.3 Punchthrough.- 3.5 Charge Storage, Transit Time.- 3.5.1 Depletion Capacitances.- 3.5.2 Hole Continuity and Cutoff Frequency.- 3.5.3 Forward Transit Time.- 3.6 Series Resistances.- 3.6.1 Emitter Resistance.- 3.6.2 Base Resistance.- 3.6.3 Collector Resistance, Quasi-Saturation.- 3.7 High-Level Injection.- 3.7.1 High-Level Injection in the Base Region.- 3.7.2 High-Level Injection in the Collector Region.- 3.7.3 The Epilayer Model of Kull et al.- 3.8 The Gummel-Poon Model.- 3.8.1 Transfer Current and Current Gain.- 3.8.2 Base Current Components.- 3.8.3 Current Gain.- 3.8.4 Charge Storage.- 3.8.5 Scries Resistances.- 3.8.6 Parameters.- 3.9 Small-Signal Description.- 3.9.1 Giacoletto Small-Signal Equivalent Circuit.- 3.9.2 Admittance Parameters.- 3.9.3 Carrier Multiplication Effects.- 3.9.4 Non-Quasi-Static Effects and Excess Phase.- 3.9.5 Nonlinear Distortion Effects.- 3.10 Figures of Merit.- 3.10.1 Cutoff Frequency.- 3.10.2 Maximum Frequency of Oscillation.- 3.10.3 CML Gate Delay and Power Delay Product.- 3.10.4 Product of Current Gain and Early Voltage.- 3.10.5 Johnson Limit.- 3.11 Temperature Dependences, Self-Heating.- 3.11.1 Temperature Dependences.- 3.11.2 Thermal Equivalent Circuit.- 3.11.3 Mitlaufeffekt, Thermal Runaway.- 3.12 Parameter Extraction - DC Measurements.- 3.12.1 Gummel Plot.- 3.12.2 Output Characteristics, Early Voltage.- 3.12.3 Series Resistances.- 3.12.4 Carrier Multiplication and Open-Base Breakdown.- 3.12.5 Thermal Resistance, Self-Heating Effects.- 3.13 Parameter Extraction - AC Measurements.- 3.13.1 De-Embedding.- 3.13.2 Transit Time.- 3.13.3 Capacitances.- 3.13.4 The Impedance Semicircle Method.- 3.14 The VBIC Model.- 3.14.1 Vertical NPN Transistor.- 3.14.2 Parasitic PNP Transistor.- 3.14.3 Stored Charges.- 3.14.4 Temperature Effects.- 3.15 The HICUM Model.- 3.15.1 Modeling Approach.- 3.15.2 Transfer Current.- 3.15.3 Static Base Current, Parasitic PNP Transistor.- 3.15.4 Series Resistances.- 3.15.5 Charge Storage.- 3.15.6 BC Avalanche Effect.- 3.15.7 Emitter Base Tunneling.- 3.15.8 Temperature Effects.- 3.16 The MEXTRAM Model.- 3.16.1 Transfer Current.- 3.16.2 Base Current Components, Parasitic PNP Transistor.. ..- 3.16.3 Epilayer Description.- 3.16.4 Series Resistances.- 3.16.5 Charge Storage.- 3.16.6 Avalanche Effect.- 3.16.7 Temperature Effects.- 3.16.8 Discussion.- 3.17 References.- 4. Physics and Modeling of Heterojunction Bipolar Transistors.- 4.1 Heterojunctions.- 4.1.1 Thermal Equilibrium.- 4.1.2 Forward-Biased Heterojunction.- 4.1.3 Depletion Capacitance.- 4.2 Heterojunction Bipolar Transistors.- 4.2.1 Transfer Current.- 4.2.2 Offset Voltage.- 4.2.3 Nonequilibrium Carrier Transport.- 4.3 Silicon-Based Semiconductor Hctorostructures.- 4.3.1 Growth of SiGe/Si Heterostructures.- 4.3.2 SiGe Material Parameters.- 4.4 SiGe HBTs.- 4.4.1 Transfer Current.- 4.4.2 Base Transit Time.- 4.4.3 High-Level-Injection Effects.- 4.4.4 Compact Models for SiGe HBTs.- 4.5 Compound Semiconductor HBTs.- 4.5.1 GaAlAs/GaAs HBTs.- 4.5.2 Indium Phosphide.- 4.5.3 Microwave Power Transistors.- 4.6 References.- 5. Noise Modeling.- 5.1 Noise in Semiconductors.- 5.1.1 Shot Noise and Thermal Noise.- 5.1.2 Generation-Recombination Noise.- 5.1.3 Low-Frequency Noise (1/f Noise).- 5.2 Transport Theory of Noise.- 5.2.1 Langevin Approach to the Noise of Ohmic Resistors.- 5.3 Noise of pn Junctions.- 5.3.1 Noise Mechanism of Biased pn Junctions.- 5.3.2 Langevin Approach to the Noise of pn Junction Diodes.- 5.4 Noise Generated by the Transfer Current.- 5.5 High-Frequency Noise Equivalent Circuit.- 5.6 Noise Figure.- 5.6.1 Noise Caused by the Transfer Current.- 5.6.2 Noise Figure.- 5.6.3 Effects of Carrier Multiplication on Noise Figure.- 5.7 Low-Frequency Noise.- 5.8 References.- 6. Basic Circuit Configurations.- 6.1 Common-Emitter Configuration.- 6.1.1 Biasing.- 6.1.2 AC Characteristics.- 6.1.3 Nonlinear Distortion.- 6.2 Common-Collector Configuration.- 6.2.1 Basic Principles.- 6.2.2 AC Characteristics.- 6.3 Common-Base Configuration.- 6.4 The Diode-Connected Bipolar Transistor.- 6.4.1 Realizations.- 6.4.2 Current-Voltage Characteristic.- 6.4.3 High-Frequency Behavior.- 6.5 Current Sources and Active Loads.- 6.5.1 Current Source with Series Feedback.- 6.5.2 Current Mirror.- 6.5.3 Active Load.- 6.6 Differential Amplifiers.- 6.6.1 DC Transfer Characteristic.- 6.6.2 Differential-Mode and Common-Mode Voltage Gain.- 6.7 Analog Multipliers.- 6.8 Two-Transistor Amplifier Stages.- 6.8.1 The Darlington Configuration.- 6.8.2 The Cascode Configuration.- 6.9 Bandgap References.- 6.10 Digital Circuits.- 6.10.1 Characteristics of Digital Circuits.- 6.10.2 Bipolar-Digital-Circuit Techniques.- 6.11 References.- 7. Process Integration.- 7.1 Fabrication of Integrated npn Transistors.- 7.1.1 Collector Isolation.- 7.1.2 Emitter and Base Formation.- 7.2 Passive Components.- 7.2.1 Resistors.- 7.2.2 Capacitors.- 7.2.3 Inductors.- 7.3 PNP Transistors.- 7.3.1 Vertical pnp Transistors with Polysilicon Emitter.- 7.3.2 Lateral pnp Transistors.- 7.4 Reliability.- 7.4.1 Device Degradation.- 7.4.2 Failure of Bipolar Devices due to Electrostatic Discharges.- 7.5 References.- 8. Applications.- 8.1 Emitter-Coupled Logic.- 8.1.1 Single-Ended, Differential and Feedback ECL.- 8.1.2 Noise Margin.- 8.1.3 Flip-Flops.- 8.1.4 Frequency Dividers.- 8.2 High-Speed Optical Transmission Systems.- 8.3 RF Microelectronics.- 8.4 BiCMOS.- 8.5 References.- A. Linear and Nonlinear Response.- A.1 Linear Response.- A.1.1 Step Response, Elmore Delay.- A.2 Nonlinear Systems Without Memory.- A.2.1 Harmonic Distortion, Gain Compression.- A.2.2 Intermodulation Distortion.- A.3 Nonlinear Systems with Memory.- A.3.1 Volterra Series.- A.4 References.- B. Linear Two-Ports, s-Parameters.- B.1 Indefinite Admittance Matrix.- B.2 Terminated Two-Ports.- B.2.1 Input and Output Impedance.- B.2.2 Voltage and Current Gain.- B.2.3 Power Gain.- B.2.4 Stability.- B.2.5 Incident and Reflected Power.- B.3 S-Parameters.- B.3.1 Relations between s-Parameters and Two-Port Parameters.- B.3.2 Matching and Power Gain.- B.4 References.- C. PN Junctions: Details.- C.1 Boundary Conditions at PN Junctions.- C.2 Epitaxial Diode.- C.3 Minority-Carrier Transport in Heavily Doped Emitter Regions.- C.4 High-Frequency Diode Admittance.- C.5 References.- D. Bipolar Transistor: Details.- D.1 Drift Transistor.- D.1.1 Electron Transport Through the Base Region.- D.1.3 Excess Phase.- D.1.4 Collector Transit Time.- D.1.5 Small-Signal Analysis.- D.2 Quasi-Thrce-Dimensional Computations of the Base Resistance.- D.3 Generation of Model Parameters from Layout Data.- D.4 Generalization of the Gummol Transfer Current Relation to Arbitrary Geometries.- D.5 Definition of Series Resistances Within the Integral Charge Control Relation.- D.6 Multiplication Factor.- D.7 References.- E. Noise: Details.- E.1 Some Statistics.- E.1.1 Stochastic Variables, Correlation.- E.1.2 Ensemble Average, Distribution Function.- E.1.3 Spectral Density.- E.1.4 Carson Theorem, Shot Noise.- E.2 Velocity Fluctuations and Diffusion.- E.3 Thermodynamics and Noise.- E.4 Generation-Recombination Noise.- E.5 McWorther Model of 1/f Noise.- E.6 Short-Base Diode with Metal Contact.- E.7 Short-Base Diode with Polysilicon Contact.- E.8 Equivalent-Circuit Representation of Transfer Current Noise.- E.9 References.- F. Overtemperature Developed During Electrostatic Discharges.- F.1 Thermal Conductivity.- F.2 Transient Overtemperature During a Short Pulse.- F.3 References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BA62031710
  • ISBN
    • 354067702X
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    xx, 658 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ