Unicity of meromorphic mappings
Author(s)
Bibliographic Information
Unicity of meromorphic mappings
(Advances in complex analysis and its applications, v. 1)
Kluwer Academic, c2003
Available at 8 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 441-459) and index
Description and Table of Contents
Description
For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.
Table of Contents
Preface.
1: Nevanlinna theory. 1.1. Parabolic manifolds and Hermitian geometry. 1.2. The first main theorem. 1.3. Growths of meromorphic functions. 1.4. The lemma of logarithmic derivative. 1.5. Growth estimates of Wronskians. 1.6. The second main theorem. 1.7. Degenerate holomorphic curves. 1.8. Value distribution of differential polynomials. 1.9. The second main theorem for small functions. 1.10. Tumura-Clunie theory. 1.11. Generalizations of Nevanlinna theorem. 1.12. Generalizations of Borel theorem.
2: Uniqueness of meromorphic functions on C. 2.1. Functions that share four values. 2.2. Functions that share three values CM. 2.3. Functions that share pairs of values. 2.4. Functions that share four small functions. 2.5. Functions that share five small functions. 2.6. Uniqueness related to differential polynomials. 2.7. Polynomials that share a set. 2.8. Meromorphic functions that share the same sets. 2.9. Unique range sets. 2.10. Uniqueness polynomials.
3: Uniqueness of meromorphic functions on Cm. 3.1. Technical lemmas. 3.2. Multiple values of meromorphic functions. 3.3. Uniqueness of differential polynomials. 3.4. The four-value theorem. 3.5. The three-value theorem. 3.6. Generalizations of Rubel-Yang's theorem. 3.7. Meromorphic functions sharing one value. 3.8. Unique range sets of meromorphic functions. 3.9. Unique range sets ignoring multiplicities. 3.10. Meromorphic functions of order 4.8. Propagation theorems. 4.9. Uniqueness dealing with multiple values.
5: Algebroid functions of several variables. 5.1. Preliminaries. 5.2. Techniques of value distribution. 5.3. The second main theorem. 5.4. Algebroid reduction of meromorphic mappings. 5.5. The growth of branching divisors. 5.6. Reduction of Nevanlinna theory. 5.7. Generalizations of Malmquist theorem. 5.8. Uniqueness problems. 5.9. Multiple values of algebroid functions.
References. Symbols. Index.
by "Nielsen BookData"