The orbit method in geometry and physics : in honor of A.A. Kirillov
Author(s)
Bibliographic Information
The orbit method in geometry and physics : in honor of A.A. Kirillov
(Progress in mathematics, v. 213)
Birkhäuser Verlag, c2003
- : [us]
- : [gw]
Available at 52 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"The volume is dedicated to A.A. Kirillov and emerged from an international conference which was held in Luminy, Marseille, in December 2000..."--Pref
Includes bibliographical references
Description and Table of Contents
Description
The orbit method influenced the development of several areas of mathematics in the second half of the 20th century and remains a useful and powerful tool in such areas as Lie theory, representation theory, integrable systems, complex geometry, and mathematical physics. Among the distinguished names associated with the orbit method is that of A.A. Kirillov, whose pioneering paper on nilpotent orbits (1962), places him as the founder of orbit theory. The original research papers in this volume are written by prominent mathematicians and reflect recent achievements in orbit theory and other closely related areas such as harmonic analysis, classical representation theory, Lie superalgebras, Poisson geometry, and quantization. Contributors: A. Alekseev, J. Alev, V. Baranovksy, R. Brylinski, J. Dixmier, S. Evens, D.R. Farkas, V. Ginzburg, V. Gorbounov, P. Grozman, E. Gutkin, A. Joseph, D. Kazhdan, A.A. Kirillov, B. Kostant, D. Leites, F. Malikov, A. Melnikov, P.W. Michor, Y.A. Neretin, A. Okounkov, G. Olshanski, F. Petrov, A. Polishchuk, W. Rossmann, A. Sergeev, V. Schechtman, I. Shchepochkina. The work will be an invaluable reference for researchers in the above mentioned fields, as well as a useful text for graduate seminars and courses.
Table of Contents
A Principle of Variations in Representation Theory * Finite Group Actions on Poisson Algebras * Representations of Quantum Tori and G-bundles on Elliptic Curves * Dixmier Algebras for Classical Complex Nilpotent Orbits via Kraft-Procesi Models I * Gerbes of Chiral Differential Operators. III * Defining Relations for the Exceptional Superalgebras of Vector Fields * Schur-Weyl Duality and Representations of Permutation Groups * Quantiziation of Hypersurface Orbitla Varieties in sln * Generalization of a Theorem of Waldspurger to Nice Representations * Two More Variations on the Triangular Theme * The Generalized Cayley Map from an Algebraic Group to its Lie Algebra * Geometry of GLn(C) at Infinity: Hinges, Complete Collineations, Projective Compactifications, and Universal Boundary * Point Processes Related to the Infinite Symmetric Group * Some Toric Manifolds and a Path Integral * Projective Schur Functions as Bispherical Functions on Certain Homogeneous Superspaces * Maximal Subalgebras of the Classical Linear Lie Superalgebras
by "Nielsen BookData"