A first course in dynamics : with a panorama of recent developments

Bibliographic Information

A first course in dynamics : with a panorama of recent developments

Boris Hasselblatt, Anatole Katok

Cambridge University Press, 2003

  • : pbk.

Available at  / 33 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

The theory of dynamical systems is a major mathematical discipline closely intertwined with all main areas of mathematics. It has greatly stimulated research in many sciences and given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introduction for senior undergraduate and beginning graduate students of mathematics, physics, and engineering combines mathematical rigor with copious examples of important applications. It covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory. Readers need not be familiar with manifolds or measure theory; the only prerequisite is a basic undergraduate analysis course. The authors begin by describing the wide array of scientific and mathematical questions that dynamics can address. They then use a progression of examples to present the concepts and tools for describing asymptotic behavior in dynamical systems, gradually increasing the level of complexity. The final chapters introduce modern developments and applications of dynamics. Subjects include contractions, logistic maps, equidistribution, symbolic dynamics, mechanics, hyperbolic dynamics, strange attractors, twist maps, and KAM-theory.

Table of Contents

  • 1. What is a dynamical system?
  • Part I. Simple Behavior in Dynamical Systems: 2. Systems with stable asymptotic behavior
  • 3. Linear maps and linear differential equations
  • Part II. Complicated Behavior in Dynamical Systems: 4. Quasiperiodicity and uniform distribution on the circle
  • 5. Quasiperiodicity and uniform distribution in higher dimension
  • 6. Conservative systems
  • 7. Simple systems with complicated orbit structure
  • 8. Entropy and chaos
  • 9. Simple dynamics as a tool
  • Part III. Panorama of Dynamical Systems: 10. Hyperbolic dynamics
  • 11. Quadratic maps
  • 12. Homoclinic tangles
  • 13. Strange attractors
  • 14. Diophantine approximation and applications of dynamics to number theory
  • 15. Variational methods, twist maps, and closed geodesics
  • Appendix
  • Solutions.

by "Nielsen BookData"

Details

Page Top