Generalized kinetic models in applied sciences : lecture notes on mathematical problem
著者
書誌事項
Generalized kinetic models in applied sciences : lecture notes on mathematical problem
(Series on advances in mathematics for applied sciences, v. 64)
World Scientific, c2003
- タイトル別名
-
Generalized kinetic models in applied sciences : lecture notes on mathematical problems
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Variant title from t.p. verso
内容説明・目次
内容説明
This book deals with analytic problems related to some developments and generalizations of the Boltzmann equation toward the modeling and qualitative analysis of large systems that are of interest in applied sciences. These generalizations are documented in the various surveys edited by Bellomo and Pulvirenti with reference to models of granular media, traffic flow, mathematical biology, communication networks, and coagulation models.The above literature motivates applied mathematicians to study the Cauchy problem and to develop an asymptotic analysis for models regarded as developments of the Boltzmann equation. This book aims to initiate the research plan by the analyzing afore mentioned analysis problems.The first generalization dealt with refers to the averaged Boltzmann equation, which is obtained by suitable averaging of the distribution function of the field particles into the action domain of the test particle. This model is further developed to describe equations with dissipative collisions and a class of models that are of interest in mathematical biology. In this latter case the state of the particles is defined not only by a mechanical variable but also by a biological microscopic state.The book is essentially devoted to analytic aspects and deals with the analysis of the Cauchy problem and with the development of an asymptotic theory to obtain the macroscopic description from the mesoscopic one.
目次
From the Boltzmann Equation to the Averaged Boltzmann Equation - On the Cauchy Problem for the Averaged Boltzmann Equation - Asymptotic Theory for the Averaged Boltzmann Equation - Kinetic (Boltzmann) Models: Modeling and Analytic Problems - Critical Analysis and Research Perspectives
「Nielsen BookData」 より