Gravitational N-body simulations
著者
書誌事項
Gravitational N-body simulations
(Cambridge monographs on mathematical physics)
Cambridge University Press, 2003
大学図書館所蔵 件 / 全23件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 377-407) and index
HTTP:URL=http://www.loc.gov/catdir/description/cam032/2003046028.html Information=Publisher description
HTTP:URL=http://www.loc.gov/catdir/toc/cam031/2003046028.html Information=Table of contents
内容説明・目次
内容説明
This book discusses in detail all the relevant numerical methods for the classical N-body problem. It demonstrates how to develop clear and elegant algorithms for models of gravitational systems, and explains the fundamental mathematical tools needed to describe the dynamics of a large number of mutually attractive particles. Particular attention is given to the techniques needed to model astrophysical phenomena such as close encounters and the dynamics of black hole binaries. The author reviews relevant work in the field and covers applications to the problems of planetary formation and star cluster dynamics, both of Pleiades type and globular clusters. Self-contained and pedagogical, this book is suitable for graduate students and researchers in theoretical physics, astronomy and cosmology.
目次
- Preface
- 1. The N-body problem
- 2. Predictor-corrector methods
- 3. Neighbour treatments
- 4. Two-body regularization
- 5. Multiple regularization
- 6. Tree codes
- 7. Program organization
- 8. Initial setup
- 9. Decision-making
- 10. Neighbour schemes
- 11. Two-body algorithms
- 12. Chain procedures
- 13. Accuracy and performance
- 14. Practical aspects
- 15. Star clusters
- 16. Galaxies
- 17. Planetary systems
- 18. Small-N experiments
- Appendix A. Global regularization algorithms
- Appendix B. Chain algorithms
- Appendix C. High-order systems
- Appendix D. Practical algorithms
- Appendix E. KS procedures with GRAPE
- Appendix F. Alternative simulation method
- Appendix G. Table of symbols
- Appendix H. Hermite integration method
- References
- Index.
「Nielsen BookData」 より