Flow lines and algebraic invariants in contact form geometry
著者
書誌事項
Flow lines and algebraic invariants in contact form geometry
(Progress in nonlinear differential equations and their applications / editor, Haim Brezis, v. 53)
Birkhäuser, c2003
大学図書館所蔵 件 / 全25件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references
内容説明・目次
内容説明
This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers.
目次
Preface * Introduction, Statement of Results, Discussion of the Related Hypotheses * Review of the Previous Results, Some Open Questions * Intermediate Section * True Critical Points at Infinity * Removal of (A5) * Conditions (A2) - (A3) - (A4) - (A6) * Bibliography * Index
「Nielsen BookData」 より