Dispersive transport equations and multiscale models
著者
書誌事項
Dispersive transport equations and multiscale models
(The IMA volumes in mathematics and its applications, v. 136)
Springer, c2004
大学図書館所蔵 件 / 全8件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references
"IMA Volumes 135 ... 136 ... are the compilation of the papers presented in 3 related workshops held at the IMA in the spring of 2000. ... Workshop on "Dispersive Corrections to Transport Equations," May 1-5, 2000 ... Workshop on "Simulation of Transport in Transition Regimes," May 22-26. 2000 ... Workshop on "Multiscale Models for Surface Evolution and Reacting Flows," June 5-9, 2000 ..."--Pref
内容説明・目次
内容説明
IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wdie range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc.
目次
On the derivation of nonlinear Schrodinger and Vlasov equations * Taking on the multiscale challenge * Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system * Integrated multiscale process simulation in microelectronics * Constitutive relations for viscoelastic fluid models derived from kinetic theory * Dispersive/hyperbolic hydrodynamic models for quantum transport (in semiconductor devices) * A review on small debye length and quasi- neutral limits in macroscopic models for charged fluids * Global solution of the Cauchy problem for the relativistic Vlasov-Poisson equation with cylindrically symmetric data * Mesoscopic scale modeling for chemical vapor deposition in semiconductor manufacturing * Asymptotic limits in macroscopic plasma models * A Landau-Zener formula for two-scaled Wigner measures * Mesoscopic modeling of surface processes * Homogenous and heterogeneous models for silicon oxidation * Feature-scale to wafer-scale modeling and simulation of physical vapor deposition * WKB analysis in the semiclassical limit of a discrete NLS system * Bifurcation analysis of cylindrical Couette flow with evaporation and condensation by the Boltzmann equation * Magnetic instability in a collisionless plasma * Combined list of wokshops participants for IMA volumes 135: transport in transition regimes and 136: dispersive transport equations and multiscale models.
「Nielsen BookData」 より