Mathematical methods in computer vision
著者
書誌事項
Mathematical methods in computer vision
(The IMA volumes in mathematics and its applications, v. 133)
Springer, c2003
大学図書館所蔵 全17件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
"This volume comprises some of the key work presented at the IMA Workshops on Computer Vision during fall of 2000. ... The first Workshop was devoted to "Image Processing and Low Level Vision" (September 2000) ... the second Workshop was "High-Level Vision." This took place at the IMA in November 2000." - pref.
内容説明・目次
内容説明
This volume comprises some of the key work presented at two IMA
Workshops on Computer Vision during fall of 2000. Recent years have
seen significant advances in the application of sophisticated
mathematical theories to the problems arising in image processing.
Basic issues include image smoothing and denoising, image enhancement,
morphology, image compression, and segmentation (determining
boundaries of objects-including problems of camera distortion and
partial occlusion). Several mathematical approaches have emerged,
including methods based on nonlinear partial differential equations,
stochastic and statistical methods, and signal processing techniques,
including wavelets and other transform theories.
Shape theory is of fundamental importance since it is the bottleneck
between high and low level vision, and formed the bridge between the
two workshops on vision. The recent geometric partial differential
equation methods have been essential in throwing new light on this
very difficult problem area. Further, stochastic processes, including
Markov random fields, have been used in a Bayesian framework to
incorporate prior constraints on smoothness and the regularities of
discontinuities into algorithms for image restoration and
reconstruction.
A number of applications are considered including optical character
and handwriting recognizers, printed-circuit board inspection systems
and quality control devices, motion detection, robotic control by
visual feedback, reconstruction of objects from stereoscopic view
and/or motion, autonomous road vehicles, and many others.
目次
A large deviation theory analysis of Bayesian tree search * Expectation-based, multi-focal, saccadic vision * Statistical shape analysis in high-level vision * Maximal entropy for reconstruction of back projection images * On the Monge-Kantorovich problem and image warping * Analysis and synthesis of visual images in the brain: evidence for pattern theory * Nonlinear diffusions and optimal estimation * The Mumford-Shah functional: from segmentation to stereo
「Nielsen BookData」 より