Symmetric functions and combinatorial operators on polynomials
著者
書誌事項
Symmetric functions and combinatorial operators on polynomials
(Regional conference series in mathematics, no. 99)
Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society with support from the National Science Foundation, c2003
大学図書館所蔵 全44件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"CBMS Conference on Algebraic Combinatorics held at North Carolina State University at Raleigh, June 4-8, 2001"--T.p. verso
Includes bibliographical references (p. 261-266) and index
内容説明・目次
内容説明
The theory of symmetric functions is an old topic in mathematics which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and its occurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independent chapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods or the method of Cauchy.The last chapter sketches a non-commutative version of symmetric functions, using Young tableaux and the plactic monoid. The book contains numerous exercises clarifying and extending many points of the main text. It will make an excellent supplementary text for a graduate course in combinatorics.
目次
Symmetric functions Symmetric functions as operators and $\lambda$-rings Euclidean division Reciprocal differences and continued fractions Division, encore Pade approximants Symmetrizing operators Orthogonal polynomials Schubert polynomials The ring of polynomials as a module over symmetric ones The plactic algebra Complements Solutions of exercises Bibliography Index.
「Nielsen BookData」 より