Points on quantum projectivizations
著者
書誌事項
Points on quantum projectivizations
(Memoirs of the American Mathematical Society, no. 795)
American Mathematical Society, 2004
大学図書館所蔵 件 / 全14件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Volume 167, number 795 (end of volume)."
Includes bibliographical references (p. 139) and index
内容説明・目次
内容説明
The use of geometric invariants has recently played an important role in the solution of classification problems in non-commutative ring theory. We construct geometric invariants of non-commutative projectivizataions, a significant class of examples in non-commutative algebraic geometry. More precisely, if $S$ is an affine, noetherian scheme, $X$ is a separated, noetherian $S$-scheme, $\mathcal{E}$ is a coherent ${\mathcal{O}}_{X}$-bimodule and $\mathcal{I} \subset T(\mathcal{E})$ is a graded ideal then we develop a compatibility theory on adjoint squares in order to construct the functor $\Gamma_{n}$ of flat families of truncated $T(\mathcal{E})/\mathcal{I}$-point modules of length $n+1$. For $n \geq 1$ we represent $\Gamma_{n}$ as a closed subscheme of ${\mathbb{P}}_{X^{2}}({\mathcal{E}}^{\otimes n})$.The representing scheme is defined in terms of both ${\mathcal{I}}_{n}$ and the bimodule Segre embedding, which we construct. Truncating a truncated family of point modules of length $i+1$ by taking its first $i$ components defines a morphism $\Gamma_{i} \rightarrow \Gamma_{i-1}$ which makes the set $\{\Gamma_{n}\}$ an inverse system. In order for the point modules of $T(\mathcal{E})/\mathcal{I}$ to be parameterizable by a scheme, this system must be eventually constant. In [\textbf{20}], we give sufficient conditions for this system to be constant and show that these conditions are satisfied when ${\mathsf{Proj}} T(\mathcal{E})/\mathcal{I}$ is a quantum ruled surface. In this case, we show the point modules over $T(\mathcal{E})/\mathcal{I}$ are parameterized by the closed points of ${\mathbb{P}}_{X^{2}}(\mathcal{E})$.
目次
Introduction Compatibilities on squares Construction of the functor $\Gamma_n$ Compatibility with descent The representation of $\Gamma_n$ for low $n$ The bimodule Segre embedding The representation of $\Gamma_n$ for High $n$ Bibliography Index.
「Nielsen BookData」 より