An invitation to 3-D vision : from images to geometric models
著者
書誌事項
An invitation to 3-D vision : from images to geometric models
(Interdisciplinary applied mathematics, v. 26)
Springer, c2004
並立書誌 全1件
大学図書館所蔵 全26件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Imaging, vision, and graphics"--Cover
Includes bibliographical references (p. [487]-508) and index
内容説明・目次
内容説明
This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.
目次
Preface
1 Introduction
1.1 Visual perception: from 2-D images to 3-D models
1.2 A mathematical approach
1.3 A historical perspective
I Introductory material
2 Representation of a three-dimensional moving scene
2.1 Three-dimensional Euclidean space
2.2 Rigid body motion
2.3 Rotational motion and its representations
2.4 Rigid body motion and its representations
2.5 Coordinate and velocity transformations
2.6 Summary
2.7 Exercises
2.A Quaternions and Euler angles for rotations
3 Image formation
3.1 Representation of images
3.2 Lenses, light, and basic photometry
3.3 A geometric model of image formation
3.4 Summary
3.5 Exercises
3.A Basic photometry with light sources and surfaces
3.B Image formation in the language of projective geometry
4 Image primitives and correspondence
4.1 Correspondence of geometric features
4.2 Local deformation models
4.3 Matching point features
4.4 Tracking line features
4.5 Summary
4.6 Exercises
4.A Computing image gradients
II Geometry of two views
5 Reconstruction from two calibrated views
5.1 Epipolar geometry
5.2 Basic reconstruction algorithms
5.3 Planar scenes and homography
5.4 Continuous motion case
5.5 Summary
5.6 Exercises
5.A Optimization subject to epipolar constraint
6 Reconstruction from two uncalibrated views
6.1 Uncalibrated camera or distorted space?
6.2 Uncalibrated epipolar geometry
6.3 Ambiguities and constraints in image formation
6.4 Stratified reconstruction
6.5 Calibration with scene knowledge
6.6 Dinner with Kruppa
6.7 Summary
6.8 Exercises
6.A From images to Fundamental matrices
6.B Properties of Kruppa's equations
7 Segmentation of multiple moving objects from two views
7.1 Multibody epipolar constraint and Fundamental matrix
7.2 A rank condition for the number of motions
7.3 Geometric properties of the multibody Fundamental matrix
7.4 Multibody motion estimation and segmentation
7.5 Multibody structure from motion
「Nielsen BookData」 より