A taste of Jordan algebras
著者
書誌事項
A taste of Jordan algebras
(Universitext)
Springer, c2004
大学図書館所蔵 全27件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and indexes
内容説明・目次
内容説明
This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.
目次
0 A Colloquial Survey of Jordan Theory
0.1 Origin of the Species
0.2 The Jordan River
0.3 Links with Lie Algebras and Groups
0.4 Links with Differential Geometry
0.5 Links with the Real World
0.6 Links with the Complex World
0.7 Links with the Infinitely Complex World
0.8 Links with Projective Geometry
I A Historical Survey of Jordan Structure Theory
1 Jordan Algebras in Physical Antiquity
1.1 The Matrix Interpretation of Quantum Mechanics
1.2 The Jordan Program
1.3 The Jordan Operations
1.4 Digression on Linearization
1.5 Back to the Bullet
1.6 The Jordan Axioms
1.7 The First Example: Full Algebras
1.8 The Second Example: Hermitian Algebras
1.9 The Third Example: Spin Factors
1.1 Special and Exceptional
1.11 Classification
2 Jordan Algebras in the Algebraic Renaissance
2.1 Linear Algebras over General Scalars
2.2 Categorical Nonsense
2.3 Commutators and Associators
2.4 Lie and Jordan Algebras
2.5 The 3 Basic Examples Revisited
2.6 Jordan Matrix Algebras with Associative Coordinates
2.7 Jordan Matrix Algebras with Alternative Coordinates
2.8 The $n$-Squares Problem
2.9 Forms Permitting Composition
2.1 Composition Algebras
2.11 The Cayley--Dickson Construction and Process
2.12 Split Composition Algebras
2.13 Classification
3 Jordan Algebras in the Enlightenment
3.1 Forms of Algebras
3.2 Inverses and Isotopes
3.3 Nuclear Isotopes
3.4 Twisted involutions
3.5 Twisted Hermitian Matrices
3.6 Spin Factors
3.7 Quadratic factors
3.8 Cubic Factors
3.9 Reduced Cubic Factors
3.1 Classification
4 The Classical Theory
4.1 $U$-Operators
4.2 The Quadratic Program
4.3 The Quadratic Axioms
4.4 Justification
4.5 Inverses
4.6 Isotopes
4.7 Inner Ideals
4.8 Nondegeneracy
4.9 Radical remarks
4.1 i-Special and i-Exceptional
4.11 Artin--Wedderburn--Jacobson Structure Theorem
5 The Final Classical Formulation
5.1 Capacity
5.2 Classification
6 The Classical Methods
6.1 Peirce Decompositions
6.2 Coordinatization
6.3 The Coordinates
6.4 Minimum Inner Ideals
6.5 Capacity
6.6 Capacity Classification
7 The Russian Revolution: 1977--1983
7.1 The Lull Before the Storm
7.2 The First Tremors
7.3 The Main Quake
7.4 Aftershocks
8 Zel'manov's Exceptional Methods
8.1 I-Finiteness
8.2 Absorbers
8.3 Modular Inner Ideals
8.4 Primitivity
8.5 The Heart
8.6 Spectra
8.7 Comparing Spectra
8.8 Big Resolvents
8.9 Semiprimitive Imbedding
8.1 Ultraproducts
8.11 Prime Dichotomy
II The Classical Theory
1 The Category of Jordan Algebras
1.1 Categories
1.2 The Category of Linear Algebras
1.3 The Category of Unital Algebras
1.4 Unitalization
1.5 The Category of Algebras with Involution
1.6 Nucleus, Center, and Centroid
1.7 Strict Simplicity
1.8 The Category of Jordan Algebras
1.9 Problems for Chapter 1
2 The Category of Alternative Algebras
2.1 The Category of Alternative Algebras
2.2 Nuclear Involutions
2.3 Composition Algebras
2.4 Split Composition Algebras
2.5 The Cayley--Dickson Construction
2.6 The Hurwitz Theorem
2.7 Problems for Chapter 2
3 Three Special Examples
3.1 Full Type
3.2 Hermitian Type
3.3 Quadratic Form Type
3.4 Reduced Spin Factors
3.5 Problems for Chapter 3
4 Jordan Algebras of Cubic Forms
4.1 Cubic Maps
4.2 The General Construction
4.3 The Jordan Cubic Construction
4.4 The Freudenthal Construction
4.5 The Tits Constructions
4.6 Problems for Chapter 4
5 Two Basic Principles
5.1 The Macdonald and Shirshov--Cohn Principles
5.2 Funda
「Nielsen BookData」 より