A stability technique for evolution partial differential equations : a dynamical systems approach
Author(s)
Bibliographic Information
A stability technique for evolution partial differential equations : a dynamical systems approach
(Progress in nonlinear differential equations and their applications / editor, Haim Brezis, v. 56)
Birkhäuser, c2004
Available at 22 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references(p.359-374) and index
Description and Table of Contents
Description
* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations.
* Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs.
* Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.
Table of Contents
1. Stability Theorem: A Dynamical Systems Approach.- 1.1 Perturbed dynamical systems.- 1.2 Some concepts from dynamical systems.- 1.3 The three hypotheses.- 1.4 The S-Theorem: Stability of omega-limit sets.- 1.5 Practical stability assumptions.- 1.6 A result on attractors.- Remarks and comments on the literature.- 2. Nonlinear Heat Equations: Basic Models and Mathematical Techniques.- 2.1 Nonlinear heat equations.- 2.2 Basic mathematical properties.- 2.3 Asymptotics.- 2.4 The Lyapunov method.- 2.5 Comparison techniques.- 2.5.1 Intersection comparison and Sturm's theorems.- 2.5.2 Shifting comparison principle (SCP).- 2.5.3 Other comparisons.- Remarks and comments on the literature.- 3. Equation of Superslow Diffusion.- 3.1 Asymptotics in a bounded domain.- 3.2 The Cauchy problem in one dimension.- Remarks and comments on the literature.- 4. Quasilinear Heat Equations with Absorption. The Critical Exponent.- 4.1 Introduction: Diffusion-absorption with critical exponent.- 4.2 First mass analysis.- 4.3 Sharp lower and upper estimates.- 4.4 ?-limits for the perturbed equation.- 4.5 Extended mass analysis: Uniqueness of stable asymptotics.- 4.6 Equation with gradient-dependent diffusion and absorption.- 4.7 Nonexistence of fundamental solutions.- 4.8 Solutions with L1 data.- 4.9 General nonlinearity.- 4.10 Dipole-like behaviour with critical absorption exponents in a half line and related problems.- Remarks and comments on the literature.- 5. Porous Medium Equation with Critical Strong Absorption.- 5.1 Introduction and results: Strong absorption and finite-time extinction.- 5.2 Universal a priori bounds.- 5.3 Explicit solutions on two-dimensional invariant subspace.- 5.4 L?-estimates on solutions and interfaces.- 5.5 Eventual monotonicity and on the contrary.- 5.6 Compact support.- 5.7 Singular perturbation of first-order equation.- 5.8 Uniform stability for semilinear Hamilton-Jacobi equations.- 5.9 Local extinction property.- 5.10 One-dimensional problem: first estimates.- 5.11 Bernstein estimates for singularly perturbed first-order equations.- 5.12 One-dimensional problem: Application of the S-Theorem.- 5.13 Empty extinction set: A KPP singular perturbation problem.- 5.14 Extinction on a sphere.- Remarks and comments on the literature.- 6. The Fast Diffusion Equation with Critical Exponent.- 6.1 The fast diffusion equation. Critical exponent.- 6.2 Transition between different self-similarities.- 6.3 Asymptotic outer region.- 6.4 Asymptotic inner region.- 6.5 Explicit solutions and eventual monotonicity.- Remarks and comments on the literature.- 7. The Porous Medium Equation in an Exterior Domain.- 7.1 Introduction.- 7.2 Preliminaries.- 7.3 Near-field limit: The inner region.- 7.4 Self-similar solutions.- 7.5 Far-field limit: The outer region.- 7.6 Self-similar solutions in dimension two.- 7.7 Far-field limit in dimension two.- Remarks and comments on the literature.- 8. Blow-up Free-Boundary Patterns for the Navier-Stokes Equations.- 8.1 Free-boundary problem.- 8.2 Preliminaries, local existence.- 8.3 Blow-up: The first, stable monotone pattern.- 8.4 Semiconvexity and first estimates.- 8.5 Rescaled singular perturbation problem.- 8.6 Free-boundary layer.- 8.7 Countable set of nonmonotone blow-up patterns on stable manifolds.- 8.8 Blow-up periodic and globally decaying patterns.- Remarks and comments on the literature.- 9. Equation ut = uxx + u ln2u: Regional Blow-up.- 9.1 Regional blow-up via Hamilton-Jacobi equation.- 9.2 Exact solutions: Periodic global blow-up.- 9.3 Lower and upper bounds: Method of stationary states.- 9.4 Semiconvexity estimate.- 9.5 Lower bound for blow-up set and asymptotic profile.- 9.6 Localization of blow-up.- 9.7 Minimal asymptotic behaviour.- 9.8 Minimal blow-up set.- 9.9 Periodic blow-up solutions.- Remarks and comments on the literature.- 10. Blow-up in Quasilinear Heat Equations Described by Hamilton-Jacobi Equations.- 10.1 General models with blow-up degeneracy.- 10.2 Eventual monotonicity of large solutions.- 10.3 L?-bounds: Method of stationary states.- 10.4 Gradient bound and single-point blow-up.- 10.5 Semiconvexity estimate and global blow-up.- 10.6 Singular perturbation problem.- 10.7 Uniform stability for Hamilton-Jacobi equation. Asymptotic profile.- 10.8 Blow-up final-time profile.- Remarks and comments on the literature.- Remarks and comments on the literature.- 11. A Fully Nonlinear Equation from Detonation Theory.- 11.1 Mathematical formulation of the problem.- 11.2 Outline of results.- 11.3 On local existence, regularity and quenching.- 11.4 Single-point quenching and first sharp estimate.- 11.5 Fundamental estimates: Dynamical system of inequalities.- 11.6 Asymptotic profile near the quenching time.- Remarks and comments on the literature.- 12. Further Applications to Second- and Higher-Order Equations.- 12.1 A homogenization problem for heat equations.- 12.2 Stability of perturbed nonlinear parabolic equations with Sturmian property.- 12.3 Global solutions of a 2mth-order semilinear parabolic equation in the supercritical range.- 12.4 The critical exponent for 2mth-order semilinear parabolic equations with absorption.- 12.5 Regional blow-up for 2mth-order semilinear parabolic equations....- Remarks and comments on the literature.- References.
by "Nielsen BookData"